Advertisement

Evolution of Inorganic and Organometallic Photochemistry: Historical Perspective and Commentary

  • A. W. Adamson
Chapter
  • 299 Downloads
Part of the Catalysis by Metal Complexes book series (CMCO, volume 14)

Abstract

This introduction is written in an historical, personal vein. While certainly incomplete, hopefully it will provide flavor to and some perspective on the development of inorganic and organometallic photochemistry. Our own first encounter with photochemistry is recorded in a 1950 publication [1]; we were studying the exchange of 14CN with various cyano complexes and only after puzzling initial results did we realize that in the case of Mo(CN) 8 4− the observed exchange was induced by the newly installed fluorescent lighting (an approximate quantum yield of 7.5 is reported in Welker’s thesis, using uranyl oxalate actinometry, along with an interesting sequence of color changes). Later, on a 1954 sabbatical visit to the laboratory of J. Bjerrum, this writer was impressed not only by the large collection of Cr(III) and Co(III) ammine complexes from the time of S.M. Jørgensen, but also by anecdotal mentions of their sensitivity to sunlight.

Keywords

Excited State Coordination Compound Poly Pyridine Excited State Reaction Ligand Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.W. Adamson, J.P. Welker and M. Volpe: J. Am. Chem. Soc., 72, 4030 (1950)Google Scholar
  2. 2.
    J. Vranek: Z. Electrochem., 23, 336 (1917)Google Scholar
  3. 3.
    V. Balzani and V. Carassiti: Photochemistry of Coordination Compounds, p. 8, Academic Press, New York (1970)Google Scholar
  4. 4.
    A. Linhard and M. Weigel: Z. anorg. allgem. Chem, 266, 49 (1951)CrossRefGoogle Scholar
  5. 5.
    R. Schwartz and K. Tede: Ber., 60B, 69 (1927)Google Scholar
  6. 6.
    A.C. Parker: Proc. Roy. Soc. (London), 220, 104 (1953)CrossRefGoogle Scholar
  7. 7.
    E.A. Hausman and T.W. Davis: J. Am. Chem. Soc., 75, 5341 (1954)CrossRefGoogle Scholar
  8. 8.
    G. Emschwiller and J. Legros: Compt. rend., 239, 1941 (1954)Google Scholar
  9. 9.
    H. Taube: J. Am. Chem. Soc., 76, 2609 (1954)Google Scholar
  10. 10.
    A.W. Adamson and A.H. Sporer: J. Am. Chem. Soc., 80, 3865 (1958)CrossRefGoogle Scholar
  11. 11.
    R.A. Plane and J.P. Hunt: J.Am. Chem. Soc., 79, 3343 (1957)CrossRefGoogle Scholar
  12. 12.
    C.A. Parker and C.G. Hatchard: J. Phys. Chem., 63, 22 (1959)CrossRefGoogle Scholar
  13. 13.
    E.E. Wegner and A.W. Adamson: J. Am. Chem. Soc., 88, 394 (1966)CrossRefGoogle Scholar
  14. 14.
    A.W. Adamson, W.L. Waltz, E. Zinato, D.W. Watts, P.D. Fleischauer and R.D. Lindholm: Chem. Rev., 68, 541 (1968)CrossRefGoogle Scholar
  15. 15.
    A.W. Adamson and P.D. Fleischauer: Concepts of Inorganic Photochemistry, Wiley, New York (1975)Google Scholar
  16. 16.
    G.L. Geoffroy and M.S. Wrighton: Organometallic Photochemistry, Academic Press, New York (1979)Google Scholar
  17. 17.
    V. Balzani and F. Scandola: Supramolecular Photochemistry, Ellis Horwood, New York (1991)Google Scholar
  18. 18.
    A few of the names that come to mind are V. Balzani, F. Scandola and E. Zinato in Italy, F. Wasgestian and A. Vogler in Germany, S. Kirk and W. Waltz in Canada, and J. Demas, P. Ford, H. Gafney, C. Kutal, A. Lees, and M. Wrighton in the U.S.Google Scholar
  19. 19.
    After all, a catalytic agent is considered to be such if it can be recovered unchanged (at least in principle) after the reaction; such is hardly the case with photo-induced reactions since the light quanta are consumed. A special case, however, is that in which a catalyst is photogenerated.Google Scholar
  20. 20.
    C.J. Ballhausen: Introduction to Ligand Field Theory, McGraw Hill, New York (1962)Google Scholar
  21. 21.
    C.K. Jorgensen: Absorption Spectra and Bonding in Complexes, Pergamon, New York (1962)Google Scholar
  22. 22.
    T.M. Dunn, D.S. McClure and R.G. Pearson: Crystal Field Theory, Harper and Row, New York (1965)Google Scholar
  23. 23.
    A.W. Adamson:Disc. Far. Soc., 29, p. 163 (1960)CrossRefGoogle Scholar
  24. 24.
    E. Zinato, R.D. Lindholm and A.W. Adamson: J. Am. Chem. Soc., 91, 1076 (1969)CrossRefGoogle Scholar
  25. 25.
    M.R. Edelson and R.A. Plane: Inorg. Chem., 3, 231 (1964).CrossRefGoogle Scholar
  26. 26.
    A.W. Adamson: J. Phys. Chem., 71, 798 (1967).CrossRefGoogle Scholar
  27. 27.
    A.W. Adamson, C. Geosling, R. Pribush and R. Wright: Inorg. Chim. Acta, 16, L5 (1976).Google Scholar
  28. 28.
    R. Ballardini, G. Varoni, H.F. Wasgestian, L. Moggi and V. Balzani: J. Phys. Chem., 77, 2947 (1973).CrossRefGoogle Scholar
  29. 29.
    N.A.P. Kane-Maguire and C.H. Langford: Chem. Comm., 895 (1971).Google Scholar
  30. 30.
    H.L. Schläfer: Z. phys. Chem.(Frankfurt), 11, 65 (1957); J. Phys. Chem., 69, 2201 (1965)Google Scholar
  31. 31.
    A.W. Adamson: Adv. Chem. Ser., 150 ( R.B. King ed.), American Chemical Society, Washington, D.C. (1976)Google Scholar
  32. 32.
    See, for example F. Basolo and R.G. Pearson: Mechanisms of Inorganic Reactions,Wiley (1958); The flavor of the times is well captured in the monograph R.K. Murmann, R.T.M. Fraser and J. Bauman: Mechanisms of Inorganic Reactions, (Adv. in Chem. 49) American Chemical Society, Washington, DC (19xx)Google Scholar
  33. 33.
    C. Kutal and A.W. Adamson: Inorg. Chem., 12, 1454 (1973).Google Scholar
  34. 34.
    P. Natarajan and A. W. Adamson: J. Am. Chem. Soc., 93, 5591 (1971)CrossRefGoogle Scholar
  35. 35.
    M.S. Matheson, W.A. Mulac and J. Rabini: J. Phys. Chem., 67, 2613 (1963)CrossRefGoogle Scholar
  36. 36.
    W.L. Waltz, A.W. Adamson, P.D. Fleischauer: J. Am. Chem. Soc., 89, 3923 (1967); W.L. Waltz and A.W. Adamson: J. Phys. Chem. 73, 4250 (1969)CrossRefGoogle Scholar
  37. 37.
    H. Gausmann and H.L. Schläfer: J. Chem.Phys., 48, 4056 (1968)CrossRefGoogle Scholar
  38. 38.
    D.J. Binet, E.L. Goldberg and L.S. Forster: J. Phys. Chem. 72, 3017 (1968).CrossRefGoogle Scholar
  39. 39.
    G.A.Crosby, R.E. Whan and R.M. Alire: J. Chem. Phys., 34, 743 (1961).Google Scholar
  40. 40.
    J.G. Calvert and J.N. Pitts, Jr.: Photochemistry, Wiley, New York (1966).Google Scholar
  41. 41.
    G.S. Hammond and J. Saltiel: J. Am. Chem. Soc., 84, 4983 (1962).CrossRefGoogle Scholar
  42. 42.
    A. Vogler and A.W. Adamson: J. Am. Chem. Soc., 90, 5943 (1968).CrossRefGoogle Scholar
  43. N.A.P. Kane-Maguire, C.G. Toney, B. Swiger, A.W. Adamson and R.E. Wright: Inorg. Chim. Acta,22, Ll 1 (1977).Google Scholar
  44. 44.
    J.N. Demas and A.W. Adamson: J. Am. Chem. Soc., 93, 1800 (1971).CrossRefGoogle Scholar
  45. 45.
    H.D. Gafney and A.W. Adamson: J. Am. Chem. Soc., 94, 8238 (1972).CrossRefGoogle Scholar
  46. 46.
    G. Navon and N. Sutin: Inorg. Chem., 13, 2159 (1974).CrossRefGoogle Scholar
  47. 47.
    K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1992Google Scholar
  48. 48.
    See, for example: a) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky: Coord. Chem. Rev.,84 85 (1988)Google Scholar
  49. b) R.A. Krause: Struc and Bonding, 67, 1 (1987)CrossRefGoogle Scholar
  50. c) T.J. Meyer: Pure Appl. Chem., 58, 1193 (1986)CrossRefGoogle Scholar
  51. d) K. Kalyanasundaram: Coord. Chem. Rev., 46, 159 (1982)CrossRefGoogle Scholar
  52. 49.
    R. Bau: Coor. Chem Rev., 110, 1 (1991).CrossRefGoogle Scholar
  53. 50.
    A.J. Lees and A.W. Adamson: J. Am. Chem. Soc., 104, 3804 (1982).CrossRefGoogle Scholar
  54. 51.
    C. Geosling, A.W. Adamson, A.R. Gutierrez: Inorg. Chim. Acta., 29, 279 (1978).CrossRefGoogle Scholar
  55. 52.
    A.W. Adamson, A. Vogler, H. Kunkely and R. Wachter: J. Am. Chem. Soc., 100, 1298 (1978).CrossRefGoogle Scholar
  56. 53.
    K. Peters: Science, 241, 1053 (1988).CrossRefGoogle Scholar
  57. 54.
    L. El-Sayed and A.W. Adamson: Inorg. Chim. Acta., 132, 105 (1987).CrossRefGoogle Scholar
  58. 55.
    G.E. Hardy, B.P. Chandra, J.F. Zink, A.W. Adamson, R.C. Fukuda and R.T. Walters: J. Am. Chem. Soc., 101, 2787 (1979).CrossRefGoogle Scholar
  59. 56.
    See for example S.K. Doom, P.O. Stoutland, R.B. Dyer and W.H. Woodruff: J. Am. Chem. Soc., 114, 3133 (1992)Google Scholar
  60. 57.
    R.F. Dallinger and W.H. Woodruff: J. Am. Chem. Soc., 101, 4391 (1979)CrossRefGoogle Scholar
  61. 58.
    A.W. Adamson and M. Cimolina: J. Phys. Chem. 88, 488 (1984)CrossRefGoogle Scholar
  62. 59.
    R.N. Perutz and J. Turner: Inorg. Chem., 14, 262 (1975)CrossRefGoogle Scholar
  63. 60.
    See J.N. Connally: Photochemical Conversion and Storage of Solar Energy, Academic Press, New York (1981)Google Scholar
  64. 61.
    For example P. Liska, N. Vlachopoulus, M.K. Nazeerruddin, P. Comte and M. Grätzel: J. Am. Chem. Soc., 110, 3686 (1988)CrossRefGoogle Scholar
  65. 62.
    A.W. Adamson, J.Namnath, V.J. Shastry and V. Slawson: J. Chem. Ed., 61, 221 (1984)Google Scholar
  66. 63.
    T. Kennelly, H.D. Gafney and M. Braun: J. Am. Chem. Soc., 107, 4431 (1985)CrossRefGoogle Scholar
  67. 64.
    A. Alama-Schwok, M. Ottolenghi and D. Avnir: Nature, 355, 240 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • A. W. Adamson
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations