Skip to main content

Phytochrome and membranes

  • Chapter
Book cover Photomorphogenesis in plants

Abstract

All organisms appear to be able to sense and respond to changes in their environment. The cellular mechanisms by which environmental stimuli are transduced and amplified into changes in metabolism, growth and development are complex and varied, but all share a common early step that occurs within the first few seconds of the stimulus perception: membrane permeability changes. Whether one is talking about light induction of vision in mammalian eyes, gravity induction of asymmetric growth in cress roots, or Chemotaxis in Chlamydornonas, the sensory reaction to the stimulus is typified by a rapid change in the ion content or ion current of the responding cells. Cogent hypotheses have been formulated that rationalize how these ionic changes help to mediate the ultimately visible sensory responses of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Haupt, W., 1982. Light-mediated movement of chloroplasts. Ann. Rev. Plant Physiol. 33, 205–33.

    Article  CAS  Google Scholar 

  • Kendrick, R. E., 1983. The physiology of phytochrome action. In: The Biology of Photoreception, Soc. Exp. Biol. Symp. 36, Cosins, D. J. and Vince-Prue, D. eds., pp. 275–303, Cambridge University Press, U.K.

    Google Scholar 

  • Quail, P. H., 1983. Rapid action of phytochrome in photomorphogenesis. In: Encyclopedia of Plant Physiology, New Series, 16A, Photomorphogenesis, Shropshire, Jr., W. and Mohr, H. eds., pp. 178–212, Springer-Verlag, Berlin.

    Google Scholar 

  • Racusen, R. H. and Galston, A. W., 1983. Developmental significance of light-mediated electrical responses in plant tissue. In: Encyclopedia of Plant Physiology, New Series, 16B, Photomorphogenesis, Shropshire, Jr., W. and Mohr, H. eds., pp. 687–703, Springer-Verlag, Berlin.

    Google Scholar 

  • Roux, S. J., 1984. Ca2+ and phytochrome action in plants. Bioscience 34, 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Cedel, T. E. and Roux, S. J., 1980. Further characterization of the in vitro binding of phytochrome to a membrane fraction enriched for mitochondria. Plant Physiol. 66, 696–703.

    Article  PubMed  CAS  Google Scholar 

  • Datta, N., Chen, Y-R., and Roux, S. J., 1985. Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem. Biophys. Res. Commun. 128, 1403–1408.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, D. and Oesterhelt, D., 1984. Purified phytochrome influences in vitro transcription in rye nuclei. The EMBO J. 3, 3075–3078.

    CAS  Google Scholar 

  • Fondeville, J. C., Borthwick, H. A., and Hendricks, S. B., 1966. Leaflet movement of Mimosa pudica, L. I. Identification of phytochrome action. Planta 69, 357–364.

    Article  Google Scholar 

  • Hale, C. C. II and Roux, S. J., 1980. Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells. Plant Physiol. 65, 658–662.

    Article  PubMed  CAS  Google Scholar 

  • Hepler, P. K. and Wayne, R. O., 1985. Calcium and plant development. Ann. Rev. Plant Physiol. 36, 397–439.

    Article  CAS  Google Scholar 

  • Mackenzie, Jr., J. M., Coleman, R. A., Briggs, W. R., and Pratt, L. H., 1975. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc. Natl. Acad. Sci. USA 72, 799–803.

    Article  PubMed  Google Scholar 

  • Marmé, D. and Dieter, P., 1983. Role of Ca2+ and calmodulin in plants. In: Calcium and Cell Function, Vol. 4, Cheung, W. Y. ed., pp. 263–311, Academic Press, New York.

    Google Scholar 

  • Newman, I. A., 1981. Rapid electric responses of oats to phytochrome show membrane processes unrelated to pelletability. Plant Physiol. 68, 1494–1499.

    Article  PubMed  CAS  Google Scholar 

  • Roth-Bejerano, N. and Kendrick, R. E., 1979. Effects of filipin and steroids on phytochrome pelletability. Plant Physiol. 63, 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Roux, S. J., McEntire, K., Slocum, R. D., Cedel, T. E., and Hale, C. C. II, 1981. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc. Natl. Acad. Sci. USA 78, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Roux, S. J., 1983. A possible role for Ca2+ in mediating phytochrome In: The Biology of Photoreception, Soc. Exp. Biol. Symp. 36, 561–580, Cosins, D. J. and Vince-Prue, D. eds., pp. 561–580, Cambridge University Press, UK.

    Google Scholar 

  • Saunders, M. J., Cordonnier, M.-M., Palevitz, B. A., and Pratt, L. H., 1983. Immunofluorescence visualization of phytochrome in Pisum sativum L. epicotyls using monclonal antibodies Planta 159, 545 553.

    Google Scholar 

  • Schopfer, P. and Apel, K., 1983. Intracellular photomorphogenesis. In: Encyclopedia of Plant Physiology, New Series, 16B, Photomorphogenesis, Shropshire, Jr., W. and Mohr, H. eds., pp. 258–288, Springier-Verlag, Berlin.

    Google Scholar 

  • Serlin, B. S. and Roux, S. J., 1984. Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists. Proc. Natl. Acad. Sci. USA 81, 6368–6372.

    Article  PubMed  CAS  Google Scholar 

  • Serlin, B. S. and Roux, S. J., 1986. Light-induced import of the chromoprotein, phytochrome, into isolated mitochondria. Biochim. Biophys. Acta 848, 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Tanada, T., 1968. A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc. Natl. Acad. Sci. USA 50, 376–380.

    Article  Google Scholar 

  • Tobin, E. M. and Silverthorne, J., 1985. Light regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. 36, 569–594.

    Article  CAS  Google Scholar 

  • Wayne, R. O. and Hepler, P. K., 1984. The role of calcium ions in phytochrome-mediated germination of spores of Onoclea sensibilis L. Planta 160, 12–20.

    Article  CAS  Google Scholar 

  • Weisenseel, M. H. and Ruppert, H. K., 1977. Phytochrome and calcium ions are involved in light-induced membrane depolarization in Nitella. Planta 137, 225–229.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roux, S.J. (1986). Phytochrome and membranes. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2624-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2624-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3317-0

  • Online ISBN: 978-94-017-2624-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics