Skip to main content

Coaction between pigment systems

  • Chapter
Photomorphogenesis in plants

Abstract

All life on earth is fuelled by sunlight. In order to harvest the light quanta most successfully in the process of photosynthesis, plants must adapt to the light conditions of their particular habitat. In fact, development of photoautotrophic higher plants is ‘opportunistic’ in the sense that the developmental process is in part controlled by light. It is only the basic developmental patterns of plant construction which are strictly determined by the genes; within these limits fine tuning of developmental events is controlled by the actual light climate at the site where the plant has to grow (Mohr 1982).

In this chapter only intact higher plants will be considered. Results obtained with plant suspension cultures will be dealt with in Chapter 5.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Mohr, H., 1980. Interaction between blue light and phytochrome in photomorphogenesis. In: The Blue Light Syndrome, Senger, H. ed., pp. 97–118, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Mohr, H. and Drumm-Herrel, H., 1983. Coaction between phytochrome and blue/UV light in anthocyanin synthesis in seedlings. Physiol. Plant. 58, 408–414.

    Article  CAS  Google Scholar 

  • Mohr, H., 1984. Criteria for photoreceptor involvement. In: Techniques in Photomorphogenesis, Smith, H. and Holmes, M. G. eds., pp. 13–42, Academic Press, London.

    Google Scholar 

  • Mohr, H., Drumm-Herrel, H., and Oelmüller, R., 1984. Coaction of phytochrome and blue/UV light photoreceptors. In: Blue Light Effects in Biological Systems, Senger, H. ed., pp. 6–19, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Schäfer, E. and Haupt, W., 1983. Blue-light effects in phytochrome-mediated responses. In: Encyclopedia of Plant Physiology, New Series, 16B, Photomorphogenesis, Shropshire, Jr., W. and Mohr, H. eds., pp. 723–744, Springer-Verlag, Berlin.

    Google Scholar 

References

  • Beggs, C. J., Holmes, M. G., Jabben, M., and Schäfer, E., 1980. Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light and dark-grown Sinapis alba L. seedlings. Plant Physiol. 66, 615–618.

    Article  PubMed  CAS  Google Scholar 

  • Blaauw, A. H., 1918. Licht und Wachstum III. Meded. Landbouwhogeschool Wageningen 15, 89–204.

    Google Scholar 

  • Downs, R. J. and Siegelman, H. W., 1963. Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol. 38, 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Drumm, H. and Mohr, H., 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling, Photochem. Photobiol. 27, 241–248.

    Article  CAS  Google Scholar 

  • Drumm-Herrel, H. and Mohr, H., 1981. A novel effect of UV-B in a higher plant (Sorghum vulgare). Photochem. Photobiol. 33, 391–398.

    Article  CAS  Google Scholar 

  • Drumm-Herrel, H. and Mohr, H., 1984. Mode of coaction of phytochrome and blue light photoreceptor in control of hypocotyl elongation. Photochem. Photobiol. 40, 261–266.

    Article  CAS  Google Scholar 

  • Drumm-Herrel, H. and Mohr, H., 1985. Relative importance of blue light and light absorbed by phytochrome in growth of mustard (Sinapis alba L.) seedlings. Photochem. Photobiol., 42, 735–739.

    Article  CAS  Google Scholar 

  • Firn, R., Digby, J., Macleod, K., and Parson, A., 1983. Phototropism: pattern of growth and gradients of light. What’s New in Plant Physiology 14, 29–32.

    Google Scholar 

  • Franssen, J. M., Cooke, S. A., Digby, J., and Firn, R. D., 1981. Measurement of differential growth causing phototropic curvature of coleoptiles and hypocotyls. Z. Pflanzenphysiol. 103, 207–216.

    Google Scholar 

  • Gaba, V., Black, M., and Attridge, T. H., 1984. Photocontrol of hypocotyl elongation in de-etiolated Cucumis sativus L. Plant Physiol. 74, 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, K. M., 1966. A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5, 349–366.

    Article  CAS  Google Scholar 

  • Holmes, M. G. and Schäfer, E., 1981. Action spectra for changes in the “high irradiance reaction” in hypocotyls of Sinapis alba L. Planta 153, 267–272.

    Article  Google Scholar 

  • Kilper, M., 1984. Action of light on cotyledon expansion in sesame (Sesamum indicum L.) seedlings. Diploma Thesis, University of Freiburg, West Germany.

    Google Scholar 

  • Mancinelli, A. L. and Rabino, I., 1978. The high irradiance responses of plant photomorphogenesis. Bot. Rev. 44, 129–180.

    Article  CAS  Google Scholar 

  • Mohr, H., 1957. Der Einfluß monochromatischer Strahlung auf das Längenwachstum des Hypocotyls und auf die Anthocyanbildung bei Keimlingen von Sinapis alba L. (= Brassica alba Boiss.) Planta 49, 389–405.

    Article  Google Scholar 

  • Mohr, H., 1972. Lectures on Photomorphogenesis, Chapter 22, Springer, Heidelberg, New York.

    Book  Google Scholar 

  • Mohr, H., 1982. Principles in plant morphogenesis. In: Axioms and Principles of Plant Construction, Sattler, R. ed., pp. 93–111, Martinus Nijhoff, The Hague.

    Chapter  Google Scholar 

  • Mohr, H., 1984. Criteria for photoreceptor involvement. In Techniques in Photomorphogenesis, Smith, H. and Holmes, M. G. ed., pp. 13–42, Academic Press, London.

    Google Scholar 

  • Mohr, H., Drumm-Herrel, H., and Oelmüller, R., 1984. Coaction of phytochrome and blue/UV light photoreceptors. In: Blue Light Effects in Biological Systems, Senger, H. ed., pp. 6–19, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Mohr, H., 1986. Mode of coaction between blue/UV light and light absorbed by phytochrome in higher plants. In: Phenomena, Distribution and Mechanisms of Blue Light Effects, Senger, H. ed., CRC Press, Boca Raton, in press.

    Google Scholar 

  • Morgan, D. C., O’Brian, T., and Smith, H., 1980. Rapid photomodulation of stem extension in Sinapis alba L. Studies on kinetics, site of perception and photoreceptor. Planta 150, 95–101.

    Article  Google Scholar 

  • Oelmüller, R. and Mohr, H., 1984. Responsivity amplification by light in phytochrome-mediated induction of chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP-dependent, EC 1.2.1.13) in the shoot of milo (Sorghum vulgare Pers.) Plant Cell Environ. 7, 29–37.

    Article  Google Scholar 

  • Oelmüller, R. and Mohr, H., 1985a. Specific action of blue light on phytochrome-mediated enzyme sythesese in the shoot of milo (Sorghum vulgare Pers.) Plant Cell Environ 8, 27–31.

    Article  Google Scholar 

  • Oelmüller, R. and Mohr, H., 1985b. Mode of coaction between blue/UV light and light absorbed by phytochrome in light-mediated anthocyanin formation in the milo (Sorghum vulgare Pers.) seedling. Proc. Natl. Acad. Sci. USA, 82, 6124–6128.

    Article  PubMed  Google Scholar 

  • Rechenberg, I., 1973. Evolutionsstrategie. Frommann, Stuttgart-Bad Canstatt.

    Google Scholar 

  • Rich, T. and Smith, H., 1985. Phytochrome and phototropism in light-grown plants. In: Book of Abstracts, European Symposium on Photomorphogenesis in Plants, p. 108, Wageningen, The Netherlands.

    Google Scholar 

  • Shropshire, W. and Mohr, H., 1970. Gradient formation of anthocyanin in seedlings of Fagopyrum and Sinapis unilaterally exposed to red and far-red light. Photochem. Photobiol. 12, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Steinitz, B. and Poff, K. L., 1984. Phototropism in Arabidopsis seedlings, Supplement to Plant Physiol. 75, no. 1, 73.

    Google Scholar 

  • Yatsuhashi, H., Hashimoto, T., and Shimizu, S., 1982. Ultraviolet action spectrum for anthocyanin formation in broom Sorghum first internode. Plant Physiol. 70, 735–741.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mohr, H. (1986). Coaction between pigment systems. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2624-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2624-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-3317-0

  • Online ISBN: 978-94-017-2624-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics