Skip to main content

Structural insight into the interaction of amyloid-β peptide with biological membranes by solid state NMR

  • Chapter
Perspectives on Solid State NMR in Biology

Part of the book series: Focus on Structural Biology ((FOSB,volume 1))

Abstract

Alzheimer’s disease (AD) is a chronic dementia, affecting an increasingly large number of old people worldwide [1–3]. AD together with mature onset diabetes and prion-transmissible spongiform encephalopathies, belongs to a category of amyloid diseases, which are all categorized by an abnormal folding of a normally soluble protein into neurotoxic aggregated structures [3–5]. The key event in AD is the metabolism of amyloid precursor protein to amyloid-β-peptide (Aβ) and the subsequent deposition of Aβ as plaques in the brains of patients. This 39–42 amino acid peptide has been linked to the apoptosis of neuronal cells, and its neurotoxicity seems to be associated with its ability to convert from a non-toxic monomeric form into toxic aggregates [5–7]. However the cellular mechanism involved in mediating the toxic effect of Aβ peptide remains unclear [6–11]; and also the process of transformation into insoluble, neurotoxic peptide aggregates. Due to the complexity and dependence of this process on physiological parameters, various models for fibril formation are studied at present including aggregation in solution [7,8], lipid-mediated aggregation of Aβ in contact with cell membrane surfaces [10–13], and formation of transmembrane ion channel-like structures in neuronal membranes [9,14,15]. Structural and biophysical studies of the self-assembly of Aβ-peptide into fibrillar structures found this process strongly dependent on the physical conditions [5,6–8,16]. While earlier studies proposed antiparallel-β-sheet structures for the amyloid fibrils [6], more recent work indicates an in register, parallel organization of β-sheets propagating and twisting along the fibrillar axis [5,17]. However, there is growing evidence that the toxic agent is not the mature fibrils themselves, but rather their precursor forms called diffusible “protofibrils” [3,4,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K., Proc. Nat. Sci. USA 82 (1985) 4245.

    Article  CAS  Google Scholar 

  2. Haass, C., and Selkoe, D. J., Cell 75 (1993) 1039.

    Article  PubMed  CAS  Google Scholar 

  3. Rochet, J.-C., and Lansbury Jr., P. T., Curr. Opin. Struct. Biol. 10 (2000) 60.

    Article  CAS  Google Scholar 

  4. Lansbury Jr., P. T., Proc. Natl. Acad. Sci. USA 96 (1999) 3342.

    Article  CAS  Google Scholar 

  5. Burkoth, T. S., Benzinger, T. L. S., Urban, V., Morgan, D. M., Gregory, D. M., Thiyagarayan, P., Botto, R. E., Meredith, S. C. and Lynn, D. G., J. Am. Chem. Soc. 122 (2000) 7883.

    Article  CAS  Google Scholar 

  6. Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J. and Shearman, M. S., Biochem. J. 311 (1995) 1.

    PubMed  CAS  Google Scholar 

  7. Lorenzo, A., and Yankner, B. A., Proc. Natl. Acad. Sci. USA 91 (1994) 12243.

    Article  CAS  Google Scholar 

  8. Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A. Benedek, G. B., Selkoe, D. J., and Teplow, D. B., J. Biol. Chem. 274 (1999) 25945.

    Article  PubMed  CAS  Google Scholar 

  9. Vargas, J., Alarcón, J. M. and Rojas, E., Biophys. J. 79 (2000) 934.

    Article  PubMed  CAS  Google Scholar 

  10. Terzi, E., Hölzemann, G., and Seelig, J., Biochemistry 36 (1997) 14845.

    Article  PubMed  CAS  Google Scholar 

  11. Kremer, J. J., Pallitto, M. M., Sklansky, D. J., and Murphy, R. M., Biochemistry 39 (2000) 10309.

    Article  PubMed  CAS  Google Scholar 

  12. McLaurin, J., Franklin, T., Chakrabartty, A., and Fraser, P. E., J. Mol. Biol. 278 (1998) 183.

    Article  PubMed  CAS  Google Scholar 

  13. Choo-Smith, L.-P., Garzon-Rodriguez, W., Glabe, C. G., and Surewicz, W. K., J. Biol. Chem. 272 (1997) 22987.

    Article  PubMed  CAS  Google Scholar 

  14. Kawahara, M., Arispe, N., Kuroda, Y., and Rojas, E., Biophys. J. 73 (1997) 9412.

    Article  Google Scholar 

  15. Rhee, S. K., Quist, A. P., and Lal, R., J. Biol. Chem. 29 (1998), 13379.

    Article  Google Scholar 

  16. Jarvet, J., Damberg, P., Bodell, K., Eriksson, L. E. G., and Gräslund, A., J. Am. Chem. Soc. 122 (2000) 4261.

    Article  CAS  Google Scholar 

  17. Antzutkin, O. N., Balbach, J. J., Leapman, R. D., Rizzo, N. W., Reed J., and Tycko, R., Proc. Natl. Acad. Sci. USA 84 (2000) 13045.

    Article  Google Scholar 

  18. Mason, R. P., Jacob, R. F., Walter, M. F., Mason, P. E., Avdulov, N. A., Chochina, S. V., Igbavboa, U., and Wood, W. G., J. Biol. Chem. 274 (1999) 18801.

    Article  PubMed  CAS  Google Scholar 

  19. Smith, S. O., Aschheim, K. and Groesbeck, M., Quart. Rev. Biophysics 29 (1996) 395.

    Article  CAS  Google Scholar 

  20. Glaubitz, C., Gröbner, G., and Watts, A., Biochim. Biophys. Acta 1463 (2000) 151.

    Article  CAS  Google Scholar 

  21. Griffin, R. G., Nature Struct. Biol. 5 (1998) 508.

    Article  PubMed  CAS  Google Scholar 

  22. Raleigh, D. P., Levitt, M. H., and Griffin, R. G., Chem. Phys. Lett. 146 (1988) 71.

    Article  CAS  Google Scholar 

  23. Andrade, M. A., Chacon, P., Merelo, J. J., and Moran, F., Protein Engineering 6 (1993) 383.

    Article  PubMed  CAS  Google Scholar 

  24. Pinheiro, T. J. T., and Watts, A., Biochemistry 33 (1994) 2459.

    Article  PubMed  CAS  Google Scholar 

  25. Warschawski D. E., Gross, J. D., and Griffin, R. G., J. Chim. Phys. PCB 95 (1998) 460.

    Article  CAS  Google Scholar 

  26. Durell, S. R., Guy, H. R., Arispe, N., Rojas, E., and Pollard, H. B., Biophys. J. 67 (1994) 2137.

    Google Scholar 

  27. McDonnell, P. A., Shon, L., Kim, Y., and Opella, S. J., J. Mol. Biol. 233 (1993) 447.

    Article  PubMed  CAS  Google Scholar 

  28. Naito, A., Nagao, T., Norisada, K., Mizuno, T., Tuzi, S., and Saitô, H., Biophys. J. 78 (2000) 2405.

    Google Scholar 

  29. Tycko, R., J. Biomol. NMR 8 (1996) 239.

    Article  PubMed  CAS  Google Scholar 

  30. Karlsson, T., Edén, M., Luthman, H., and Levitt, M. H., J. Magn. Reson. 145 (2000) 95.

    Article  PubMed  CAS  Google Scholar 

  31. Gregory, D. M., Wolfe, G. M., Jarvie, T. P., Sheils J. C., and Drobny, G. P., Mol. Phys. 89 (1996) 1835.

    Google Scholar 

  32. Pauli, J., van Rossum, B., Förster, H., de Groot, H. J. M., and Oschkinat, H., J. Magn. Reson. 143 (2000) 411.

    Article  PubMed  CAS  Google Scholar 

  33. Hong, M., J. Biomol. NMR 15 (1999) 1.

    Article  PubMed  CAS  Google Scholar 

  34. Rienstra, C. M., Hohwy, M., Hong, M., and Griffin, R. G., J. Am. Chem. Soc. 122 (2000) 10979.

    Article  CAS  Google Scholar 

  35. van Rossum, B.-J., Steensgaard, D. B., Mulder, F. M., Boender, G. J., Schaffner, K., Holzwarth, A. R., and de Groot, H. J. M., Biochemistry, in press.

    Google Scholar 

  36. Huster, D. Yamaguchi, S., and Hong, M., J.Am. Chem. Soc. 122 (2000) 11320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gröbner, G., Glaubitz, C., Williamson, P.T.F., Hadingham, T., Watts, A. (2001). Structural insight into the interaction of amyloid-β peptide with biological membranes by solid state NMR. In: Kiihne, S.R., de Groot, H.J.M. (eds) Perspectives on Solid State NMR in Biology. Focus on Structural Biology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2579-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2579-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5744-0

  • Online ISBN: 978-94-017-2579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics