Skip to main content

Ultrafiltration with peritoneal dialysis

  • Chapter
Peritoneal dialysis

Abstract

There is a clinical requirement to remove excess body water and its attendant electrolytes on a regular basis from patients with end-stage renal failure. For patients treated with peritoneal dialysis this is accomplished osmotically rather than hydrostatically as is the common practice with hemodialysis [1–3]. To date, glucose is the only agent that has been accepted clinically for regulating the osmolality of peritoneal dialysis fluid for this purpose. The problem of overloading the patient with carbohydrate calories is significant in patients under treatment with CAPD. As a result other osmotically active agents will undoubtedly be tested and applied clinically in the next few years. The present discussion will focus on glucose and its use as a driving force for ultrafiltration across the peritoneal membrane with the expectation that most of the principles developed for this solute will apply equally to other solutes that may be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin J, Nolph KD, Popovich RP, Moncrief B: Drainage volume during continuous ambulatory peritoneal dialysis. ASAIO J 2: 54, 1979.

    Google Scholar 

  2. Durbin RP: Osmotic flow of water across permeable cellulose membranes. J Gen Physiol 44: 315, 1960.

    Article  PubMed  CAS  Google Scholar 

  3. Henderson LW: The problem of peritoneal membrane area and permeability. Kidney Int 3: 409, 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Pyle WK, Popovich RP, Moncrief JW: Mass Transfer Evaluation in Peritoneal Dialysis. In: Moncrief JW, Popovich RP (eds), Proc. CAPD Int Symp II, May 9–10 1980, NY: Masson, pp 35–52 1981.

    Google Scholar 

  5. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992, 1969.

    Article  PubMed  CAS  Google Scholar 

  6. Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 70: 931, 1969.

    PubMed  CAS  Google Scholar 

  7. Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 5: 9, 1982.

    Google Scholar 

  9. Speigler KS, Kadern O: Transport coefficients and salt rejection in uncharged hyperfiltration membrane. Desalination 1: 311, 1966.

    Article  Google Scholar 

  10. Villarroel F, Klein E, Holland F: Solution flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Intern Organs 23: 255, 1977.

    Article  Google Scholar 

  11. Pappenheimer JR, Landis EM: Exchange of substances through the capillary walls. In: Handbook of Physiology, Vol 2, Section 2, p 961. American Physiological Society, Washington, DC 1963.

    Google Scholar 

  12. Rosenbaum RW, Hruska KA, Anderson C, Robson AM, Slatopolsky E, Klahr S: Inulin: an inadequate marker of glomerular filtration rate in kidney donors and transplant recipients? Kidney Int 16: 999, 1979.

    Article  Google Scholar 

  13. Colton CK, Smith KA, Merrill EW, Friedman S: Diffusion of urea in flowing blood. Am Inst Chem Engin J 17: 800, 1971.

    Article  CAS  Google Scholar 

  14. Henderson LW: Peritoneal ultrafiltration dialysis: Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1966.

    Article  PubMed  CAS  Google Scholar 

  15. Babb AL, Johansen PJ, Stand MJ, Tenckhoff H, Scribner BH: Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transpl Assoc 10: 247, 1973.

    CAS  Google Scholar 

  16. Andreoli TE, Schafer JA, Troutman SL: Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol 57: 479, 1971.

    Article  PubMed  CAS  Google Scholar 

  17. Colton CK, Henderson LW, Ford Ca, Lysaght MJ: Kinetics of hemodiafiltration I. In vitro transport characteristics of a hollow-fiber blood ultrafilter. J Lab Clin Med 85: 355, 1975.

    PubMed  CAS  Google Scholar 

  18. Henderson LW, Colton CK, Ford CA: Kinetics of hemodiafiltration II. Clinical characterization of a new blood cleansing modality. J Lab Clin Med 85: 372, 1975.

    PubMed  CAS  Google Scholar 

  19. Colton CK: Permeability and transport studies in batch and flow dialyzers with application to hemodialysis. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge 1969.

    Google Scholar 

  20. Carone FA, Banks DB, Post RS: Micropuncture study of albumin excretion in the normal rat. Am J Physiol 55: 19A, 1969.

    Google Scholar 

  21. Green DM, Antwiller GD, Moncreif JW, Decherd JF, Popovich R: Measurement of the transmit-tance coefficient spectrum of Cuprophan and RP 69 membranes: application to middle molecule removal via ultrafiltration. Trans Am Soc Artif Intern Organs 22: 627, 1967.

    Google Scholar 

  22. Colton CK, Smith KA, Merrill and Reece JM: Diffusion of organic solutes in stagnant plasma and red cell suspensions. Chem Eng Prog Symp Series 66: 85, 1970.

    CAS  Google Scholar 

  23. Wayland H, Silberber A: Blood to lymph transport. Microvasc Res 15: 367, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Miller FN, Wiegman DL, Joshua IG, Nolph KD, Rubin J: Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol 161: 605, 1979.

    PubMed  CAS  Google Scholar 

  25. Wayland H: Transmural and interstitial molecular transport. Proc. Int. Sympt. CAPD. Paris, 1979, Excerpta Medica. Amsterdam, p 18 1980.

    Google Scholar 

  26. Nolph KD, Ghods A, Van Stone J, Brown PA: The effects of intraperitoneal vasodilators on peritoneal clearance. Trans Am Soc Artif Intern Organs 22: 586, 1976.

    PubMed  CAS  Google Scholar 

  27. Renkin EM: Exchange of substances through capillary walls. In: Circulatory and Respiratory mass Transport, Ciba Foundation Symp. Little, Brown and Co, Boston 1969.

    Google Scholar 

  28. Dedrick RL, Flessner MF, Collins JM, Schultz JS: Is the peritoneum a membrane? ASAIO J 5:1, 1982.

    Google Scholar 

  29. Slingeneyer A, Canaud B, Mion C: Permanent loss of ultrafiltration capacity of the peritoneum in long term peritoneal dialysis: An epidemiologic study. Nephron 33: 133, 1983

    Article  PubMed  CAS  Google Scholar 

  30. Faloer B, Marichal JF: Loss of ultrafiltration in CAPD: clinical data; advances in peritoneal dialysis. In: Gahl, Kessel, Nolph (eds), Int Congr Ser No 567, Excerpta Medica, Amsterdam, 1981, p 227.

    Google Scholar 

  31. Verger C, Brunschvicg O, Le Charpentier Y et al: Structural and ultrastructural peritoneal membrane changes in permeability alterations during CAPD. Proc Eur Dial Transpl Assoc 18:199, 1981.

    CAS  Google Scholar 

  32. Smeby Le, Wideroe T, Jorstad S: Individual differences in water transport during continuous peritoneal dialysis. ASAIO J 4: 17, 1981

    Google Scholar 

  33. Nolph KD, Pyle WK: NIH CAPD patient registry report: population demographcs and outcomes for the period 1/1/82 through 12/31/82, 1983.

    Google Scholar 

  34. Rubin J, Ray R, Barnes T, Bower J: Peritoneal abnormalities during infectious episodes of continuous ambulatory peritoneal dialysis. Nephron 29: 124, 1983

    Article  Google Scholar 

  35. Wu G, Khanna R, Oreopoulos DG, Vas SI: Incidence and pathogenesis of ultrafiltration failure among CAPD patients. Abstract Am Soc Nephrol p. 125A, 1983.

    Google Scholar 

  36. Nolph KD: An international cooperative study: factors effecting ultrafiltration in continous ambulatory peritoneal dialysis. Perit Dial Bull 4: 14–19, 1984.

    Google Scholar 

  37. Maher JF, Hirszel P, Bennett RR, Chakrabarti E: Amphotericin B selectively increases peritoneal ultrafiltration. Abstract Am Soc Nephrol p 121A, 1983.

    Google Scholar 

  38. Oren A, Wu G, Anderson GH, Marliss E, Khanna R, Petitt J, Mupas L, Rodella H, Brandes L, Roncari DA, Kakis G, Harrison J, McNeil K, Oreopoulos DG: Effective use of amino acid dialysate over four weeks in CAPD patients. Trans Am Soc Artif Intern Organs 29: 604, 1983.

    PubMed  CAS  Google Scholar 

  39. Nolph KD, Hopkins C, Rubin J, Twardowski Z, Popovich R, VanStone J: Polymer induced ultrafiltration in dialysis: high osmotic pressure due to impermeant polymer sodium Trans Am Soc Artif Intern Organs 24: 162, 1978.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henderson, L. (1985). Ultrafiltration with peritoneal dialysis. In: Nolph, K.D. (eds) Peritoneal dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2560-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2560-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2562-0

  • Online ISBN: 978-94-017-2560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics