Skip to main content

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 8))

Abstract

The atomic force microscope (AFM), invented by Binnig et al. in 1986 [1], has been used for developing a novel technique for obtaining high-resolution surface images of both conductors and insulators. For several layered and nonlayered materials [2–5], atomic resolution has been achieved in the contact mode. However, the question has been raised as to whether the AFM operating in the contact mode is really a microscope like the scanning tunneling microscope with a “true” atomic resolution. That is, most of the reported data obtained with the AFM has shown either perfectly ordered periodic atomic structures or defects only on a large lateral scale [4], but no atomic-scale defects routinely observed by a scanning tunneling microscope (STM). Moreover, the usual contact mode imposes a repulsive force of 0.5–5 nN [4,6] or higher [5,6], which is greater than the ~0.1 nN acceptable for a single atom on the tip apex of an AFM cantilever and for a single atom on the sample surface. Furthermore, the AFM in the contact mode mainly measures so-called atomic-scale friction with a lattice periodicity [6] rather than the topography. The contact-mode AFM thus seems to have a large contact area between the tip and the sample [6], although in a few experiments measured under restricted conditions such as in solutions [7,9] or at low temperature [8], monoatomic step lines [7–9] and atomic-scale point defects [9] could be observed even in the contact mode. Research into the true atomic resolution of the AFM has therefore focused on resolving two problems. These are (1) to observe atomic-scale defects and (2) to observe a Si(111)7×7 reconstructed surface which is the standard sample of the ultra-high vacuum STM (UHV-STM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986).

    Article  Google Scholar 

  2. G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht and C. F. Quate, Europhysics Leu., 3, 1281 (1987).

    Article  CAS  Google Scholar 

  3. G. Meyer and N. M. Amer, Appl. Phys. Leu., 56, 2100 (1990).

    Article  CAS  Google Scholar 

  4. Y. Sugawara, M. Ohta, K. Hontani, S. Morita, F. Osaka, S. Ohkouchi, M. Suzuki, H. Nagaoka, S. Mishima and T. Okada, Jpn. J. Appl. Phys., 33, 3739 (1994).

    Article  CAS  Google Scholar 

  5. Y. Sugawara, M. Ohta, H. Ueyama and S. Morita, Jpn. J. Appl. Phys., 34, L462 (1995).

    Article  CAS  Google Scholar 

  6. S. Morita, S. Fujisawa and Y. Sugawara, Surface Science Reports, 23, 1 (1996).

    Article  CAS  Google Scholar 

  7. S. Manne, P. K. Hansma, J. Massie, V. B. Elings and A. A. Gewirth, Science, 251, 183 (1991).

    Article  CAS  Google Scholar 

  8. G. Binnig, Ultramicroscopy, 4244, 281 (1992).

    Google Scholar 

  9. F. Ohnesorge and G. Binnig, Science, 260, 1451 (1993).

    Article  CAS  Google Scholar 

  10. F. J. Giessibl, Science, 267, 68 (1995).

    Article  CAS  Google Scholar 

  11. S. Kitamura and M. Iwatsuki, Jpn. J. Appl. Phys., 34, L145 (1995).

    Article  CAS  Google Scholar 

  12. H. Ueyama, M. Ohta, Y. Sugawara and S. Morita, Jpn. J. Appl. Phys., 34, L1088 (1995).

    Article  Google Scholar 

  13. M. Ohta, H. Ueyama, Y. Sugawara and S. Morita, Jpn. J. Appl. Phys., 34, L1692 (1995).

    Article  CAS  Google Scholar 

  14. Y. Sugawara, M. Ohta, H. Ueyama and S. Morita, Science, 270, 1646 (1995).

    Article  CAS  Google Scholar 

  15. M. Bammerlin, R. Luthi, E. Meyer, A. Baratoff, J. Lu, M. Guggisberg, Ch. Gerber, L. Howald and H.-J.Guntherodt, Probe Microscopy, 1, 3 (1997).

    CAS  Google Scholar 

  16. S. Orisaka, T. Minobe, T. Uchihashi, Y. Sugawara and S. Morita, Appl. Surf. Sci., 140, 243 (1999).

    Article  CAS  Google Scholar 

  17. S. Morita and Y. Sugawara, Appl. Surf Sci., 140, 406 (1999).

    Article  CAS  Google Scholar 

  18. F. J. Giessibl, Phys. Rev. B, 56, 16010 (1997).

    Article  CAS  Google Scholar 

  19. T. R. Albrecht, P. Grutter, D. Home and D. Rugar, J. Appl. Phys., 69, 668 (1991).

    Article  Google Scholar 

  20. H. Ueyama, Y. Sugawara and S. Morita, Appl. Phys. A, 66, S295 (1998).

    Article  CAS  Google Scholar 

  21. Y. Sugawara, H. Ueyama, T. Uchihashi, M. Ohta, S. Morita, M. Suzuki and S. Mishima, Appl. Surf. Sci., 113 /114, 364 (1997).

    Article  Google Scholar 

  22. T. Uchihashi, Y. Sugawara, T. Tsukamoto, M. Ohta, S. Morita and M. Suzuki, Phys. Rev. B, 56, 9834 (1997).

    Article  CAS  Google Scholar 

  23. T. Hasegawa, M. Kohno, S. Hosaka and S. Hosoki, J. Vac. Sci. Technol. B, 12, 2078 (1994).

    Article  CAS  Google Scholar 

  24. R. J. flamers, R. M. Tromp and J. E. Demuth, Surf. Sci., 181, 346 (1987).

    Article  Google Scholar 

  25. N. Nakagiri, M. Suzuki, K. Okiguchi and H. Sugimura, Surf. Sci. Lett., 373, L329 (1997).

    Article  CAS  Google Scholar 

  26. R. Erlandsson, L. Olsson and P. Martensson, Phys. Rev. B, 54, R8309 (1996).

    Article  CAS  Google Scholar 

  27. T. Minobe, T. Uchihashi, T. Tsukamoto, S. Orisaka, Y. Sugawara and S. Morita, Appl. Surf. Sci., 140, 298 (1999).

    Article  CAS  Google Scholar 

  28. R. J. Wilson and S. Chiang, Phys. Rev. Lett., 58, 369 (1987).

    Article  CAS  Google Scholar 

  29. T. Takahashi and S. Nakatani, Surf Sci., 282, 17 (1993).

    Article  CAS  Google Scholar 

  30. S. Watanabe, M. Aono and M. Tsukada, Phys. Rev. B, 44, 8330 (1991).

    Article  CAS  Google Scholar 

  31. A. Shibata, Y. Kimura and K. Takayanagi, Surf. Sci., 275, L697 (1992).

    Article  CAS  Google Scholar 

  32. G. Meyer and K. H. Rieder, Surf. Sci., 331, 333, 600 (1995).

    Article  Google Scholar 

  33. Y. Sugawara, T. Uchihashi, M. Abe and S. Morita, Appl. Surf. Sci., 140, 371 (1999).

    Article  CAS  Google Scholar 

  34. T. Uchihashi, M. Ohta, Y. Sugawara, Y. Yanase, T. Shigematsu, M. Suzuki and S. Morita, J. Vac. Sci. Technol. B, 15, 1543 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morita, S., Sugawara, Y. (2001). Noncontact Atomic Force Microscopy. In: Ohtsu, M. (eds) Optical and Electronic Process of Nano-Matters. Advances in Optoelectronics (ADOP), vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2482-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2482-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5707-5

  • Online ISBN: 978-94-017-2482-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics