Skip to main content

Tunneling-Electron Luminescence Microscopy for Multifunctional and Real-Space Characterization of Semiconductor Nanostructures

  • Chapter
  • 220 Accesses

Part of the book series: Advances in Optoelectronics (ADOP) ((ADOP,volume 8))

Abstract

Mesoscopic optical and electronic properties that result from quantum effects appear in semiconductor nanometer-sized structures, or nanostructures, and these properties are very different from those in macroscopic structures. [1] Progress in crystal growth and micro-process technology has enabled the atomically controlled fabrication of artificial semiconductor nanostructures and devices. These have been actively studied for the purpose of achieving lower power consumption, faster operation, and advanced functions through mesoscopic effects. To improve the performance of the nanostructures and devices, their individual optical and electronic properties in local regions must be characterized, even where many nanostructures with a high density are integrated. Furthermore, it is important to characterize both buried structures and semiconductor surfaces with single-digit nanometer-level (<10 nm) spatial resolution. The intensities and emission spectra of luminescence due to the radiative recombination of electron-hole pairs confined in the nanostructures sensitively reflect atomic-scale variations in structures as well as the quality of materials in nanometer-sized regions. Therefore, luminescence measurements in local regions, or luminescence microscopy, are effective for characterizing nanostructures and have been widely used for this purpose. In luminescence microscopy, photon-induced luminescence (photoluminescence: PL) [2] and high-energy electron induced luminescence (cathodoluminescence: CL) [3] have been widely used. However, these conventional methods cannot easily produce nanometer-level lateral spatial resolution. Thus, experimental results include statistical fluctuations that result from the convolution of the number of nanostructures, so individual nanostructures are difficult to evaluate. If the nanostructure density is low enough for there to be only one structure in an excitation region, this nanostructure can be characterized. This method, however, is not generally applied. A new concept is therefore needed for luminescence microscopy with nanometer-level spatial resolution that will enable the characterization of the optical and electronic properties of individual nanostructures even if they are fabricated with a high density in local regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ehrenreich and D. Turnbull, “Solid State Physics, Academic Press, Boston (1991).

    Google Scholar 

  2. J. I. Pankov, “Optical Processes in Semiconductors, Dover, New York (1971), p. 249.

    Google Scholar 

  3. B. G. Yacobi and D. B. Holt, “Cathodoluminescence Microscopy of Inorganic Solids, Plenum, New York (1990), p. 55.

    Google Scholar 

  4. J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass, and R. P. Schlittler, J. Microscopy 152, 325 (1988).

    Article  CAS  Google Scholar 

  5. D. L. Abraham, A. Veider, Ch. Schonenberger, H. P. Meier, D. J. Arent, and S.F. Alvarado, Appl. Phys. Lett. 56, 1564 (1990).

    Article  Google Scholar 

  6. S. Ushioda, Y. Uehara, and M. Kuwahara, Appl. Surf. Sci. 60 /61, 448 (1992).

    Article  Google Scholar 

  7. L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, and M.-E. Pistol, J. Vac. Sci. Technol. B12, 2521 (1994).

    Article  CAS  Google Scholar 

  8. B. Akamatsu, P. Henoc, and A. C. Paradopoulo, Scanning Electron Microscopy IV, 1579 (1983).

    Google Scholar 

  9. K. Wada, A. Kozen, H. Fushimi, and N. Inoue, Jpn. J. Appl. Phys. 27, L1952 (1988).

    Article  Google Scholar 

  10. M. Ohtsu, “Near-Field Nano/Atom Optics and Technology,” Springer, Tokyo (1998).

    Google Scholar 

  11. E. Burnstein and S. Lundqvist, “Tunneling Phenomena in Solids, Plenum, New York (1969).

    Google Scholar 

  12. T. Murashita and M. Tanimoto, Jpn. J. Appl. Phys. 34, 4398 (1995).

    Article  CAS  Google Scholar 

  13. T. Murashita, J. Vac. Sci. Technol. B15, 32 (1997).

    Article  CAS  Google Scholar 

  14. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, Jpn. J. Appl. Phys. 31, L1302 (1992).

    Article  CAS  Google Scholar 

  15. M. Kuwabara, K. Kokura, and S. Ikegami, Proceedings of the 40th International Wire and Cable Symposium, IWCS, St. Louis (1991), pp. 167–171.

    Google Scholar 

  16. T. Murashita, J. Vac. Sci. Technol. B17, 22 (1999).

    Article  CAS  Google Scholar 

  17. S. Sasaki and T. Murashita, Jpn. J. Appl. Phys. 38, L4 (1999).

    Article  CAS  Google Scholar 

  18. H. K. Yung, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 79, 2473 (1995).

    Google Scholar 

  19. M. V. Fichetti, N. Sano, S. E. Laux, and K. Natori, Proceedings of SISPAD-96 (1996) p. 46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murashita, T. (2001). Tunneling-Electron Luminescence Microscopy for Multifunctional and Real-Space Characterization of Semiconductor Nanostructures. In: Ohtsu, M. (eds) Optical and Electronic Process of Nano-Matters. Advances in Optoelectronics (ADOP), vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2482-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2482-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5707-5

  • Online ISBN: 978-94-017-2482-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics