Skip to main content

Canonical Differential Operators Associated to a Riemannian Manifold

  • Chapter
Old and New Aspects in Spectral Geometry

Part of the book series: Mathematics and Its Applications ((MAIA,volume 534))

  • 818 Accesses

Abstract

Let (M,g) be a n-dimensional Riemannian manifold. Then g allows us to define a σ-regular Borel measure μ g on M determined by a positive linear functional λ g :C 0(M)→ℝ, where C 0(M) is the space of continuous real valued functions defined on M with compact support, that is for each fC 0(M) with f ≥ 0 we have λ g(f) ≥ 0. Indeed, let (U,Ø) be a local chart on M with coordinates x 1 ,…,x n, i.e. x 1 =ξ 1°Ø,1≤in, where ξ 1:ℝn→ℝ denotes the canonical projection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BERGER, M., GAUDUCHON, P. and MAZET, E. Le Spectre d’une Variété Rieman-nienne, Lecture Notes in Math., Vol. 194, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  • BOMBIERI, E., Theory of minimal surfaces and a counter-example to the Bernstein conjecture in high dimension, Lecture Notes, Courant Institute, 1970.

    Google Scholar 

  • BUSER, P., Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, Vol. 106, Birkhäuser, Boston, 1992.

    Google Scholar 

  • CHAVEL, I., Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.

    MATH  Google Scholar 

  • CRAIOVEANU, M. and PUTA, M., Introducere in Geometria Spectralk, Editura Academiei Române, Bucuresti, 1988.

    Google Scholar 

  • GALLOT, S. and MEYER, D., Opérateur de courbure et Laplacien des formes différentielles d’ une variété riemanniennes, J. Math. Pures et Appl., 54 (1975), 259–284.

    MathSciNet  Google Scholar 

  • GILBARG, D. and TRUDINGER, N., Elliptic Partial Differential Equations of Second Order,2“d Ed. Die Grundlehren der Mathematischen Wissenschaften, B. 224(1983), Springer-Verlag, Berlin.

    Google Scholar 

  • GILKEY, P.B., The Index Theorem and the Heat Equation,Publish and Perish Lecture Notes 4(1974).

    Google Scholar 

  • GILKEY, P.B. and PARK, J.H., Riemannian submersions which preserve the eigenforms of the Laplacian, Illinois J. Math. 40 (1996). 194–201.

    MathSciNet  MATH  Google Scholar 

  • GOLDBERG, S.I. and ISHIHARA, T., Riemannian submersions commuting with the Laplacian, J. Differential Geometry 13 (1978), 139–144.

    MATH  Google Scholar 

  • GORDON, C.S. and WILSON, E.N., Isospectral deformations of compact solvmanifolds, J. Diff. Geometry 19 (1984), 241–256.

    MATH  Google Scholar 

  • HELGASON, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    MATH  Google Scholar 

  • LANG, S., Analysis II, Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1969.

    Google Scholar 

  • LI, P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Scient. Éc. Norm. Sup., 4-e série, t. 13 (1980), 451–469.

    MATH  Google Scholar 

  • SAKAI, T., Riemannian Geometry, Translations of Mathematical Monographs, Vol. 149, American Mathematical Society. Providence. Rhode Island, 1996.

    Google Scholar 

  • WATSON, B., Manifold maps commuting with the Laplacian, J. Differential Geometry, 8 (1973), 85–94.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Craioveanu, M., Puta, M., Rassias, T.M. (2001). Canonical Differential Operators Associated to a Riemannian Manifold. In: Old and New Aspects in Spectral Geometry. Mathematics and Its Applications, vol 534. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2475-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2475-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5837-9

  • Online ISBN: 978-94-017-2475-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics