Skip to main content

Assessment of an Effective Stress Analysis for Predicting the Performance of Driven Piles in Clays

  • Chapter

Abstract

Researchers have advocated systematic analyses, which model changes in effective stresses and soil properties through successive phases in the life of a pile, as a rational method for understanding the factors which control pile performance. Work at MIT has included the development of analytical models which simulate soil disturbance effects associated with pile installation (Strain Path Method), and constitutive models (e.g., MIT-E3) which describe the effective stress-strain behaviour of normally and lightly overconsolidated clays (OCR ≤ 4) through successive phases in the life of the pile. This paper summarizes the role of these analyses in predictions of pile shaft behaviour. The results illustrate the effects of soil properties, mode of pile installation and other factors affecting the limiting skin friction which can be mobilized at the pile shaft. Predictive capabilities and limitations of the proposed ‘objective analysis’ are reviewed based on comparisons with high quality field data measured by the piezo-lateral stress (PLS) cell and by instrumented model pile tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubeny, C. P. (1992), ‘Rational Interpretation of in-situ Tests in Cohesive Soils’, PhD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  2. Azzouz, A. S. and Lutz, D. G. (1986), `Shaft behaviour of a model pile in plastic Empire clays’, ASCE Journal of Geotechnical Engineering 112 (4), 389–406.

    Article  Google Scholar 

  3. Azzouz, A. S. and Morrison, M. J. (1988), `Field measurements on model pile in two clay deposits’, ASCE Journal of Geotechnical Engineering 114 (1), 104–121.

    Article  Google Scholar 

  4. Azzouz, A. S., Baligh, M. M., and Whittle, A. J. (1990), `Shaft resistance of friction piles in clay’, ASCE Journal of Geotechnical Engineering 116 (2), 205–221.

    Article  Google Scholar 

  5. Baligh, M. M. (1985), `Strain path method’, ASCE Journal of Geotechnical Engineering 111(9), 1108–1136.

    Google Scholar 

  6. Baligh, M. M. (1986a), `Undrained deep penetration: I Shear stresses’, Géotechnique 36 (4), 471–485.

    Article  Google Scholar 

  7. Baligh, M. M. (1986b), `Undrained deep penetration: II Pore pressures’, Géotechnique 36 (4), 487–501.

    Article  Google Scholar 

  8. Baligh, M. M. and Kavvadas, M. (1980), `Axial Static Capacity of Offshore Friction Piles in Clays’, Research Report R80–32, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  9. Baligh, M. M. and Levadoux,J.-N. (1980), `Pore Pressure Dissipation After Cone Penetration’, Research Report R80–11, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  10. Baligh, M. M., Azzouz, A. S., and Chin, C. T. (1987), `Disturbances due to `ideal’ tube sampling’, ASCE Journal of Geotechnical Engineering 113 (7), 739–757.

    Article  Google Scholar 

  11. Bond, A. J., Jardine, R. J., and Dalton, C. P. (1992), `Design and performance of the Imperial College instrumented pile’, ASTM Geotechnical Testing Journal 14(4), 413–425.

    Google Scholar 

  12. Boagard, D., Matlock, H., Audibert, J. M. E., and Bamford, S. R. (1985), `Three years’ experience with model pile segment tool tests’, Proc. 17th Offshore Tech. Conf., Houston, Paper 4848.

    Google Scholar 

  13. Burland, J. B. (1973), `Shaft friction of piles in clay — A simple fundamental approach’, Ground Engineering 6 (3), 30–42.

    Google Scholar 

  14. Chandler, R. J. (1968), `The shaft friction of piles in cohesive soils in terms of effective stresses’, Civ. Engrg. Public Works Review, Jan., 48–51.

    Google Scholar 

  15. Chin, C. T. (1986), `Open-Ended Pile Penetration in Saturated Clays’, PhD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  16. Clayton, C. R. I., Khatrush, S. A., Bica, B. V. D., and Siddique, A. (1989), `The use of Hall effect semi-conductors in geotechnical instrumentation’, ASTM Geotechnical Testing Journal 12 (1), 69–76.

    Article  Google Scholar 

  17. Coop, M. R. and Wroth, C. P. (1989), `Field studies of an instrumented model pile in clay’, Géotechnique 39 (4), 679–696.

    Article  Google Scholar 

  18. DeBorst, R. and Vermeer, P. A. (1984), `Possibilities and limitations of finite element for limit analysis’, Géotechnique 32 (2), 199–210.

    Article  Google Scholar 

  19. DeGroot, D. J. (1989), `The Multi-Directional Simple Shear Apparatus with Application to the Design of Offshore Arctic Structures’, PhD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  20. DeGroot, D. J., Ladd, C. C., and Germaine, J. T. (1992a), `Direct Simple Shear Testing of Cohesive Soils’, Research Report R92–18, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  21. Dyvik, R. and Olsen, T. S. (1989), `G m. measured in oedometer and DSS tests using bender elements’, Proc. 12th Intl. Conf. on Soil Mechs. and Found. Engrg., Rio de Janeiro, Vol. 1, pp. 39–42.

    Google Scholar 

  22. Esrig, M. I., Kirby, R. C., Bea, R. G., and Murphy, B. S. (1977), `Initial development of a general effective stress method for the prediction of axial capacity of driven piles in clay’, Proc. 9th Offshore Tech. Conf, Houston, 3, pp. 495–506.

    Google Scholar 

  23. Francesçon, M. (1983), `Model Pile Tests in Clay — Stresses and Displacements due to Installation and Pile Loading’, PhD Thesis, University of Cambridge.

    Google Scholar 

  24. Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y. S., and Sato, T. (1991), `A simple gauge for small strain measurements in the laboratory’, Soils and Foundations 31 (1), 169–180.

    Article  Google Scholar 

  25. Jardine, R. J., Symes, M. J., and Burland, J. B. (1984), `The measurement of soil stiffness in the triaxial apparatus’, Géotechnique 34 (3), 323–34.

    Article  Google Scholar 

  26. Jardine, R. J. and Christoulas, S. (1991), `Recent developments in defining and measuring static piling diameters’, Proc. Intl. Conf. on Deep Foundations, Paris, Press Nationale de l’École Nationale des Ponts et Chausées, pp. 713–745.

    Google Scholar 

  27. Karlsrud, K. and Haugen, T. (1985), `Axial static capacity of steel model piles in overconsolidated clay’, Proc. 11th Intl. Conf. on Soil Mechs. and Found. Engrg., San Francisco, pp. 1401–1406.

    Google Scholar 

  28. Karlsrud, K. and Nadim, F. (1990), `Axial capacity of offshore piles in clay’, Proc. 22nd Offshore Tech. Conf, Houston, Paper 4883.

    Google Scholar 

  29. Karlsrud, K., Nadim, F., and Haugen, T. (1986), `Piles in clay under cyclic axial loading, field tests and computational modelling’, Proc. 3rd Intl. Conf. on Numerical Methods in Offshore Piling, Nantes, France, pp. 166–190.

    Google Scholar 

  30. Karlsrud, K., Borg Hansen, S., Dyvik, R., and Kalsnes, B. (1992), `NGI’s pile tests at Tilbrook and Pentre — Review of testing procedures and results’, Proc. ICE Conf. on Recent Large Scale Fully Instrumented Pile Tests in Clay, London, July.

    Google Scholar 

  31. Karlsrud, K., Kalsnes, B., and Nowacki, F. (1992), `Response of piles in soft clay and silt deposits to static and cyclic loading based on recent instrumented pile load tests’, Proc. SUT Conf. on Offshore Site Investigation and Foundation Behaviour, London, September.

    Google Scholar 

  32. Kavvadas, M. (1982), `Non-Linear Consolidation around Driven Piles in Clays’, ScD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  33. Kiousis, P. D., Voyiadis, G. Z., and Tumay, M. T. (1988), `A large strain theory and its application in the analysis of the cone penetration mechanism’, Intl. J. for Num. Anal. Meth. in Geomechanics 12 (1), 45–60.

    Article  Google Scholar 

  34. Kraft, L. M. (1982), `Effective stress capacity model for piles in clay’, ASCE Journal of Geotechnical Engineering 108 (11), 1387–1404.

    Google Scholar 

  35. Kraft, L. M., Focht, J. A., and Amerasinghe, S. E (1981), `Friction capacity of piles driven into clay’, ASCE Journal of Geotechnical Engineering 107 (11), 1521–1541.

    Google Scholar 

  36. Lacasse, S. (1979), `Effect of Load Duration on Undrained Behaviour of Clay and Sand’, NGI Internal Report 40007–1.

    Google Scholar 

  37. Ladd, C. C. and Edgers, L. (1972), `Consolidated-Undrained Direct-Simple Shear Tests on Saturated Clays’, Research Report R72–82, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  38. Ladd, C. C. and Foott, R. (1974), `New design procedure for stability of soft clays’, ASCE Journal of Geotechnical Engineering 100 (7), 763–786.

    Google Scholar 

  39. Lehane, B. and Jardine, R. (1992), `The behaviour of a displacement pile in Bothkennar clay’, Proc. Wroth Memorial Symposium, Oxford.

    Google Scholar 

  40. Lemos, L. J. (1985), `The Effects of Rate on the Residual Strength of Soil’, PhD Thesis, Imperial College, London University.

    Google Scholar 

  41. Levadoux, J.-N. and Baligh, M. M. (1980), `Pore Pressures in Clays due to Cone Penetration’, Research Report R80–15, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  42. Malek, A. M., Azzouz, A. S., Baligh, M. M., and Germaine, J. T. (1989), `Behaviour of foundation clays supporting compliant offshore structures’, ASCE Journal of Geotechnical Engineering 115 (5), 615–636.

    Article  Google Scholar 

  43. May, R. E. (1987), `A Study of the Piezocone Penetrometer in Normally Consolidated Clay’, PhD Thesis, Dept. of Engineering Science, University of Oxford.

    Google Scholar 

  44. Morrison, M. J. (1984), `In Situ Measurements on a Model Pile in Clay’, PhD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  45. Nyirenda, z. M. (1989), `The Piezocone in Lightly Overconsolidated Clay’, PhD Thesis, Dpt. of Engineering Science, University of Oxford.

    Google Scholar 

  46. O’Neill, D. A. (1985), `Undrained Strength Anisotropy of an Overconsolidated Thixotropic Clay’, SM Thesis, MIT, Cambridge, MA.

    Google Scholar 

  47. Randolph, M. F., Carter, J. P., and Wroth, C. P. (1979), `Driven piles in clay: Effects of installation and subsequent consolidation’, Géotechnique 29 (4), 361–393.

    Article  Google Scholar 

  48. Randolph, M. F. and Wroth, C. P. (1981), `Application of the failure state in undrained simple shear to the shaft capacity of driven piles’, Géotechnique 31 (1), 143–157.

    Article  Google Scholar 

  49. Roscoe, K. H. and Burland, J. B. (1968), `On the generalized behaviour of wet clays’, Engineering Plasticity, J. Heymann and F. A. Leckie (eds.), Cambridge University Press, pp. 535–609.

    Google Scholar 

  50. Roy, M., Blanchet, R., Tavenas, F., and LaRochelle, P. (1981), `Behaviour of a sensitive clay during pile driving’, Canadian Geotechnical Journal 18(1), 67–85.

    Google Scholar 

  51. Teh, C.-I. and Houlsby, G. T. (1991), `An analytical study of the cone penetration test in clay’, Géotechnique 41(1), 17— 35.

    Google Scholar 

  52. Ting, N.-H., Onoue, A., Germaine, J. T., Whitman, R. V., and Ladd, C. C. (1990), `Effects of Disturbance on Soil Consolidation with Vertical Drains’, Research Report R90–11, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  53. Whittle, A. J. (1987), ‘A Constitutive Model for Overconsolidated Clays with Application to the Cyclic Loading of Friction Piles’, ScD Thesis, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  54. Whittle, A. J. (1990), `A Constitutive Model for Overconsolidated Clays’, MIT Sea Grant Report, MITSG90–15.

    Google Scholar 

  55. Whittle, A. J. (1991A), `Evaluation of a constitutive model for overconsolidated clays’, Géotechnique,to appear.

    Google Scholar 

  56. Whittle, A. J. (1991b), `Interpretation of pile load tests at the Haga site’, Proc. ASME Conf. on Offshore Mechs. and Arctic Engrg. (OMAE ‘81), Stavanger, Vol. 4, pp. 267–275.

    Google Scholar 

  57. Whittle, A. J., Baligh, M. M., Azzouz, A. S., Malek, A. M. (1988), `A model for predicting the performance of TLP piles in clay’, Proc. 5th Intl. Conf. on Behaviour of Offshore Strctures (BOSS ‘88), Trondheim, Vol. 1, pp. 97–112.

    Google Scholar 

  58. Whittle, A. J. and Baligh, M. M. (1988), `The Behaviour of Piles Supporting Tension Leg Platforms. Results of Phase III’, Report submitted to Join Oil Industry, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  59. Whittle, A. J., Aubeny, C. P., Rafalovich, A., Ladd, C. C., and Baligh, M. M. (1991), ‘Interpretation of In-Situ Tests in Cohesive Soils using Rational Methods’, Research Report R91–01, Dept. of Civil Engineering, MIT, Cambridge, MA.

    Google Scholar 

  60. Whittle, A. J., DeGroot, D. J., Ladd, C. C., and Seah, T. H. (1992), `Model prediction of the anisotropic properties of Boston Blue Clay’, ASCE Journal of Geotechnical Engineering, to appear.

    Google Scholar 

  61. Wood, D. M. (1981), `True triaxial tests on Boston Blue Clay’, Proc. 11th Intl. Conf. on Soil Mechs. and Found. Engrg., Stockholm, pp. 825–830.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whittle, A.J. (1993). Assessment of an Effective Stress Analysis for Predicting the Performance of Driven Piles in Clays. In: Ardus, D.A., Clare, D., Hill, A., Hobbs, R., Jardine, R.J., Squire, J.M. (eds) Offshore Site Investigation and Foundation Behaviour. Advances in Underwater Technology, Ocean Science and Offshore Engineering, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2473-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2473-9_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4293-4

  • Online ISBN: 978-94-017-2473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics