Skip to main content

In vitro’ and ‘in situ’ decomposition of nuisance macroalgae Cladophora glomerata and Pilayella littoralis

  • Chapter
Nutrients and Eutrophication in Estuaries and Coastal Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 164))

Abstract

The decomposition of two macroalgal species Cladophora glomerata (CHLOROPHYTA) and Pilayella littoralis (PHAEOPHYTA) was studied in the laboratory and field conditions. These species are known to cause the extensive ‘macroalgal blooms’ in the whole coastal range of the Baltic Sea. The objective of the experiments was to determine decomposition rates of the macroalgae, follow the changes in tissue nutrient content and validate the role of benthic invertebrates in this process. In the laboratory conditions, the differences in the decomposition rates of the algae were mainly due to the oxygen conditions. The weight loss of C. glomerata was slightly higher in anaerobic conditions than in aerobic conditions. If 99% of initial dry weight of P. littoralis was lost in aerobic conditions then only 20% was lost in anaerobic conditions. In general, the loss of phosphorus and nitrogen in algal tissues followed the weight loss. As an exception, the amount of nitrogen changed very little during the decomposition of C. glomerata. In field conditions, the photosynthetic activity exceeded the decomposition rate of C. glomerata at lower temperatures in spring. The decomposition of P. littoralis was estimated at 49% of its initial dry weight. The addition of benthic invertebrates had no effect on the decomposition process. In summer, the decomposition rates were estimated at 65% for C. glomerata and 68% for P. littoralis being in the same order of magnitude as observed in laboratory conditions. If the decomposition of C. glomerata was faster at the end of the experiment, the most significant losses of weight of P. littoralis took place during the first 2 weeks of deployment. Idotea baltica significantly contributed to the loss of C. glomerata. The decomposition rate of P. littoralis was reduced by the presence of Mytilus edulis and increased by Gammarus oceanicus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birch, P. B., J. O. Gabrielson and K. S. Hamel, 1983. Decomposition of Cladophora I. Field studies in the Peel-Harvey estuarine system, western Australia. Bot. Mar. 26: 165–171.

    Google Scholar 

  • Bäck, S.. J. C. Collins and G. Russell, 1991. Aspects of the reproductive biology of Fucus vesiculosus from the coast of SW Finland. Ophelia 34: 129–141.

    Article  Google Scholar 

  • Briand, X., 1991. Seaweed harvesting in Europe. In Guiry, M. D. and G. Blunden (eds), Seaweed Resources in Europe: Uses and Potential. John Wiley and Sons. Chichester: 259–308.

    Google Scholar 

  • Buchsbaum, R., I. Valiela, T. Swain, M. Drierzeski and S. Allen, 1991. Available and refractory nitrogen in detritus of coastal vascular plants and macroalgae. Mar. Ecol Prog. Ser. 72: 131–143.

    Google Scholar 

  • Carpenter. S. R. and M. S. Adam, 1979. Effects of nutrients and temperature on decomposition of Myriophvllum spicaton L. in a hard-water eutrophic lake. Limnol. Oceanogr. 24: 520–528.

    Google Scholar 

  • Everett, R. A., 1994. Macroalgae in marine soft-sediment communities: effects on benthic faunal assemblages. J. exp. mar. Biol. Ecol. 175: 253–274.

    Google Scholar 

  • Ferreira, M. T., A. Franco, L. Catarino, I. Moreira and P. Sousa, 1999. Environmental factors related to the establishment of algal mats in concrete irrigation channel. Hydrobiologia 415: 163–168.

    Article  Google Scholar 

  • Gabrielson, J. O., P. B. Birch andK. S. Hamel, 1983. Decomposition of Cladophora II. In vitro studies of nitrogen and phosphorus regeneration. Bot. Mar. 26: 173–179.

    Google Scholar 

  • Grasshoff, K., 1976. Methods of Seawater Analysis. Chemie, New York: 317 pp.

    Google Scholar 

  • Hansen, K. and E. Kristensen, 1997. Impact of macrofaunal recolonization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuar. coast. shelf Sci. 45: 613–628.

    Article  CAS  Google Scholar 

  • Kautsky. U., 1995. Ecosystem processes on coastal areas of the Baltic Sea. Ph.D. thesis. Stockholm University: 25 pp. + 6 appendices.

    Google Scholar 

  • Kotta, J.. 2000. Impact of eutrophication and biological invasions on the structure and functions of benthic macrofauna. Dissertationes Biologicae Universitatis Tartuensis, 63. Tartu University Press: 160 pp.

    Google Scholar 

  • Kotta, J.. T. Paalme, G. Martin and A. Mäkinen, 2000. Major changes in macroalgae community composition affect the food and habitat preference of Idotea baltica. Int. Rev. Hydrobiol. 85: 697–705.

    Google Scholar 

  • Lavery, P. S. and A. J. McComb, 1991. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary. Estuar. coast. shelf Sci. 32: 281–295.

    Article  Google Scholar 

  • Lawrence. J. E.. A. G. Bauder, J. Grant and A. D. Cembella, 1999. Environmental conditions related to DSP toxin dynamics at a Nova Scotia aquaculture site. Can. Tech. Rep. Fish. aquat. Sci. 2261: 18.

    Google Scholar 

  • Mäkinen, A. and K. Aulio, 1986. Cladophora glomerata (Chlorophyta) as an indicator of coastal eutrophication. Publ. Water Res. Instit. Finland 68: 160–163.

    Google Scholar 

  • Mann, K. H., 1988. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33: 910–930.

    Google Scholar 

  • Morand, P. and X. Briand. 1996. Excessive growth of macroalgae: a symptom of environmental disturbance. Bot. Mar. 39: 491–516.

    Google Scholar 

  • Nicholls, D. J., C. R. Tubbs and F. N. Hayes, 1981. The effect of green algal mats on intertidal macrobenthic communities and their predators. Kieler Meeresforsch. Sonderh. 5: 511–520.

    Google Scholar 

  • Norkko, A. and E. Bonsdorff, 1996a. Population responses of coastal zoobenthos to stress induced by drifting algal mats. Mar. Ecol. Prog. Ser. 140: 141–151.

    Google Scholar 

  • Norkko, A. and E. Bonsdorff, 1996b. Rapid zoobenthic community responses to accumulations of drifting algae. Mar. Ecol. Prog. Ser. 131: 143–157.

    Google Scholar 

  • Pagioro, T. A. and S. M. Thomaz, 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Upper Parana River floodplain. Hydrobiologia 411: 45–51.

    Article  Google Scholar 

  • Peckol, P. and J. S. Rivers. 1996. Contribution by macroalgal mats to primary production of a shallow embayment under high and low nitrogen-loading rates. Estuar. coast. shelf Sci. 43: 311–325.

    Article  CAS  Google Scholar 

  • Pellikaan, G. C., 1984. Laboratory experiments on eelgrass (Zostera marina L.) decomposition. Neth. J. Sea Res. 18: 360–383.

    Google Scholar 

  • Raimbault, P. and G. Slawyk, 1991. A semiautomatic, wet-oxidation method for the determination of particulate organic nitrogen collected on filters. Limnol. Oceanogr. 36: 405–408.

    Google Scholar 

  • Reusch, T. B. H., A. R. O. Chapman and J. P. Gröger, 1994. Blue mussel Mvtilus edulis do not interfere with eelgrass Zostera marina but fertilize shoot growth through biodeposition. Mar. Ecol. Prog. Ser. 108: 265–282.

    Google Scholar 

  • Rieper-Kirchner, M.. 1990. Macroalgal decomposition: laboratory studies with particular regard to microorganisms and meiofauna. Helgoländer Meeresunters. 44: 397–410.

    Article  Google Scholar 

  • Sfriso, A. and A. Marcomini, 1998. Macrophyte production in a shallow coastal lagoon. Part I: Coupling with chemico-physical parameters and nutrient concentrations in waters. Mar. Environ. Res. 44: 351–375.

    Google Scholar 

  • Solorzano, L. and J. H Sharp, 1980. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr. 25: 751–754.

    Google Scholar 

  • Soulsby, P. G.. D. Lowthion and M. Houston, 1982. Effects of macroalgal mats on the ecology of intertidal mudflats. Mar. Poll. Bull. 13: 162–166.

    Google Scholar 

  • Thiel, M., L. M. Stearns and L. Watling, 1998. Effects of green algal mats on bivalves in a New England mud flat. Helgoländer Meeresunters. 52: 15–28.

    Article  Google Scholar 

  • Valiela, I., J. McClelland, J. Hauxwell, P. J. Behr, D. Hersh and K. Foreman, 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42: 1 105–1 1 18.

    Google Scholar 

  • Vogt, H. and W. Schramm, 1991. Conspicuos decline of Fucus in Kiel Bay (western Baltic): what are the causes? Mar. Ecol. Prog. Ser. 69: 189–194.

    Google Scholar 

  • Wallentinus, I., 1978. Productivity studies on Baltic macroalgae. Bot. Mar. 21: 365–380.

    Google Scholar 

  • Williams, S. L., 1984. Decomposition of the tropical macroalga Caulerpa cupressoides (West) C. Agardh: field and laboratory studies. J. exp. mar. Biol. Ecol. 80: 109–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paalme, T., Kukk, H., Kotta, J., Orav, H. (2002). ‘In vitro’ and ‘in situ’ decomposition of nuisance macroalgae Cladophora glomerata and Pilayella littoralis . In: Orive, E., Elliott, M., de Jonge, V.N. (eds) Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2464-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2464-7_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6123-2

  • Online ISBN: 978-94-017-2464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics