Skip to main content

Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain

  • Chapter
Nutrients and Eutrophication in Estuaries and Coastal Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 164))

Abstract

Nutrient input dynamics in the Mar Menor coastal lagoon has recently changed as a consequence of changes in agricultural practises. An interannual comparison of the environmental variables and the planktonic biomass size-spectra was performed between 1988 and 1997. While nitrate concentration was low in 1988, the values in 1997 increased considerably. Since 1995, two alloctonous jellyfish species (Rhyzostoma pulmo and Cotylorhiza tuberculata) occurred in large numbers in summer time and reached peak abundance in summer of 1997. The size-spectra analysis comparison revealed that, in spite of changes in nutrient input that stimulated the growth of larger phytoplankton cells, there were no significant differences in the spectra slope which followed a similar seasonal trend in both years. However, the plankton biovolume considered under the size range compared (between 2 and 1000 μm diameter) was, paradoxically, always lower in 1997. Given that there were higher nutrient levels in 1997, this finding suggest a strong top-down control mechanism of size structure. Gut contents of jellyfishes showed their preference for large diatoms, tintinnids, veliger larvae and copepods, corroborating that size structure in these assemblages can be subject to top-down control. The implication of these results is that the feeding activities of large gelatinous zooplankton (jellyfishes) may play an important role controlling the consequences of eutrophication within the Mar Menor coastal lagoon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agawin, N. S. R., C. M. Duarte and S. Agustí, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.

    Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bartram, W. C., 1980. Experimental development of a model for the feeding of neritic copepods on plankton. J. Plankton Res. 3: 25–51.

    Article  Google Scholar 

  • Blanco, J. M., F. Echevarría, and C. M. Garcia, 1994. Dealing with size-spectra: Some conceptual and mathematical problems. In Rodriguez, J. and W. K. W. Li (eds), The Size Structure and Metabolism of the Pelagic Ecosystem. Sci. Mar. 58: 17–29.

    Google Scholar 

  • Cottingham, K. L., 1999. Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnol. Oceanogr. 44: 810–827.

    Google Scholar 

  • Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. and A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213–237.

    Chapter  Google Scholar 

  • DeAngelis, D. L., 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, London.

    Google Scholar 

  • Fernandez, J. A., F. X. Niell and J. Lucena, 1985. A rapid and sensitive automated determination of phosphate in natural waters. Limnol. Oceanogr. 30: 227–230.

    Google Scholar 

  • Frost, B. W., 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacifzcus. Limnol. Oceanogr. 17: 805–815.

    Google Scholar 

  • Gaedke, U., 1992. The size distribution of plankton biomass in a large lake and its seasonal variability. Limnol. Oceanogr. 37: 1202–1220.

    Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distributions: a case study of a plankton community in a large lake. Limnol. Oceanogr. 38. 112–127.

    Google Scholar 

  • Geider, R. J., T. Platt and J. A. Raven, 1986. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30: 93–115.

    Google Scholar 

  • Gilabert, J., 1992. Analisis del ecosistema planctónico del Mar Menor. Ciclo anual, distribución de tamanos y red trófica. Ph. D. University of Murcia.

    Google Scholar 

  • Gilabert, J., J. Rodriguez and F. Jiménez-Montes, 1990. The planktonic size-abundance spectrum in an oligotrophic hypersaline coastal lagoon, the Mar Menor, Murcia, Spain. In Barnes, M. and R. N. Gibson (eds), Trophic Relationships in the Marine Environment. Aberdeen University Press, Aberdeen: 18–27.

    Google Scholar 

  • Hein, M., M. F. Pedersen and K. Sand-Jensen, 1995. Size-dependent nitrogen uptake in micro-and macroalgae. Mar. Ecol. Prog. Ser. 118: 247–253.

    Google Scholar 

  • Heinbokel, J. F. and J. R. Beers, 1979. Studies on the functional role of tintinnids in the Southern California Bight. III. Grazing impact of natural assemblages. Mar. Biol. 52: 23–32.

    Google Scholar 

  • Kerfoot C. and A. Sih (eds), 1987. Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover. 386 pp.

    Google Scholar 

  • Lehman, J. T., 1991. Interacting growth and loss rates: the balance of top-down and bottom-up controls in plankton communities. Limnol. Oceanogr. 36: 1546–1554.

    Google Scholar 

  • Lillo, M., 1978. Geomorfología litoral del Mar Menor. Papeles del Departamento de Geografia (Universidad de Murcia) 8: 9–49.

    Google Scholar 

  • Malone, T. C., 1980. Algal size. In Morris, I. (ed.). The Physiological Ecology of Phytoplankton. Studies in Ecology, 7. Univ. California Press. Blackwell: 433–463.

    Google Scholar 

  • Newell, R. C., 1982. The energetics of detritus utilisation in coastal lagoons and nearshore waters. In Laserre, P. and H. Postma (eds), Coastal Lagoons. Oceanol. Acta. Proceeedings International Symposium on Coastal Lagoons. Special publication: 347–355.

    Google Scholar 

  • Newell, R. C., 1984. The biological role of detritus in the marine environment. In Fasham, M. R. J. (ed.), Flows of Energy and Materials in Marine Ecosystems. Plenum Press, New York: 317344.

    Google Scholar 

  • Niehnius, P. H.. 1992. Ecology of coastal lagoons in The Netehr- lands ( Veerse Meer and Grevelingen ). Vie Milieu 42: 59–72.

    Google Scholar 

  • Nixon. S. W., J. R. Kelly, B. N. Fumas, C. A. Oviatt and S. S. Hale. 1980. Phosphorous regeneration and the metabolism of coastal marine bottom communities. In Tenore, K.R. and B.C. Coull (eds), Marine Benthic Dynamics. Univ. of South Carolina Press. Columbia (S.C.): 219–242.

    Google Scholar 

  • Parsons. T. R., L. Maita and C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York.

    Google Scholar 

  • Pérez-Ruzafa, A., 1989. Estudio ecologico y bionómico de los poblamientos bentónicos del Mar Menor ( Murcia, SE de Espana). Ph. D. University of Murcia.

    Google Scholar 

  • Pérez-Ruzafa, I. M., 1989. Fitobentos de una laguna costera. El Mar Menor. Ph. D. University of Murcia.

    Google Scholar 

  • Peters, F., 1994. Prediction of planktonic protistan grazing rates. Limnol. Oceanogr. 39: 195–206.

    Google Scholar 

  • Platt, T. and K. Denman, 1977. Organization in the pelagic ecosystem. Helgol. wiss. Meeresunters 30: 575–581.

    Google Scholar 

  • Platt, T. and K. Denman, 1978. The structure of pelagic marine

    Google Scholar 

  • ecosystem. Rapp. P.-v. Reun. Cons. int. Explor. Mer. 173: 60–65. Raymont, J. E. G., 1963. Plankton and Productivity in the Oceans.

    Google Scholar 

  • Vol. I. Pergamon Press, Oxford: 489 pp.

    Google Scholar 

  • Rodriguez, J. and M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31: 361–370.

    Google Scholar 

  • Rodriguez. J.. F. Jiménez, B. Bautista and V. Rodriguez, 1987. Planktonic biomass spectra dynamics during a winter production pulse in Mediterranean coastal waters. J. Plankton Res. 9: 1183–1194.

    Article  Google Scholar 

  • Ros, M. and M. R. Miracle, 1984a. Distribución temporal de las dinoflageladas del Mar Menor. Anales de Biologia 2: 169–180.

    Google Scholar 

  • Ros, M. and M. R. Miracle, 1984b. Variación estacional del fitoplancton del Mar Menor y sus relaciones con la de un punto próximo en el Mediterraneo. Limnetica 1: 32–42.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London: 357 pp.

    Google Scholar 

  • Silvert, W. and T. Platt, 1980. Dynamic energy-flow model of the particle size distribution in pelagic ecosystems. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England. Hanover (N.H.): 754–763.

    Google Scholar 

  • Sprules, W. G. and R. Knoechel, 1984. Lake ecosystem dynamics based on functional representation of trophic components. In Meyers, D. G. and J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems. Westview Press, Boulder (CO): 383–403.

    Google Scholar 

  • Sprules, W. G. and M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. aquat. Sci. 43: 1789–1794.

    Google Scholar 

  • Terrados, J and J. D. Ros. 1991. Production dynamics in a macrophyte-dominated ecosystem: the Mar Menor coastal lagoon (SE Spain). In Ros, J. D. and N. Prat (eds), Homage to Ramon Margalef; or, Why there is such Pleasure in Studying Nature? Oecol. Aqua 10: 255–270.

    Google Scholar 

  • Thingstad, T. F. and F. Rassoulzadegan, 1999. Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea. Prog. Oceanogr. 44: 271–286.

    Google Scholar 

  • Vaulot, D. and G. F. Frisoni, 1986. Phytoplanktonic productivity and nutrients in five Mediterranean lagoons. Oceanol. Acta 9: 57–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pérez-Ruzafa, A., Gilabert, J., Gutiérrez, J.M., Fernández, A.I., Marcos, C., Sabah, S. (2002). Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. In: Orive, E., Elliott, M., de Jonge, V.N. (eds) Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2464-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2464-7_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6123-2

  • Online ISBN: 978-94-017-2464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics