Skip to main content

Short-term variations in the physiological state of phytoplankton in a shallow temperate estuary

  • Chapter
Nutrients and Eutrophication in Estuaries and Coastal Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 164))

Abstract

Short-term changes in the photosynthetic carbon metabolism and physiological state of phytoplankton were studied over a summer fortnight-long period in the Urdaibai estuary (Bay of Biscay) and related to observed environmental patterns. Day-to-day variability in the hydrographical and biological features of the estuary during the study period was due to changes in meteorological and tidal conditions. Phytoplankton biomass and primary production increased with the improvement of weather, i.e., light conditions, during neap tides. Thus a mixed bloom of cryptophyceans, Euglena sp., and the dinoflagellate Peridinium foliaceum developed in the middle and upper estuary. Photosynthetic responses of phytoplankton were related to the time-scale of changes in light regime. Allocation of photosynthate to major macromolecular classes (LMWM, lipid, polysaccharide, and protein), like phytoplankton biomass and primary production, showed strong spatio-temporal variability. High carbon fixation into low molecular weight metabolites was associated with growth limitation by low light. The relative incorporation of photosynthetic carbon into proteins increased at the beginning of the phytoplankton bloom but overall, it was rather constant. However, carbon allocation into storage products such us lipid or polysaccharide increased when carbon and energy produced under optimal growth conditions exceeded what could be assimilated into protein. These patterns are explained by both spatio-temporal changes in the environmental conditions and species-specific differences. In general, daily variability appeared to be more important than diurnal periodicity in the physiological responses of phytoplankton. Results from this study show that phytoplankton photosynthesis and carbon metabolism are simultaneously affected by biotic and abiotic factors, although short-term light fluctuations may have a major influence on the physiological state of phytoplankton in the Urdaibai estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campbell, E. E. & G. C. Bate, 1987. Factors influencing the magnitude of phytoplankton primary production in a high-energy surf zone. Estuar. coast. Shelf Sci. 24: 741–750.

    Article  CAS  Google Scholar 

  • Cloern, J. E. & F. H. Nichols, 1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. Hydrobiologia 129: 229–237.

    Article  Google Scholar 

  • Côte, B. & T. Platt, 1983. Day-to-day variations in the spring-summer photosynthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28: 320–344.

    Article  Google Scholar 

  • Delgadillo-Hinojosa, F., G. Gaxiola-Castro, J. A. Segovia-Zavala, A. Munoz-Barbosa & M. V. Orozco-Borbón, 1997. The effect of vertical mixing on primary production in a Bay of the Gulf of California. Estuar. coast. Shelf Sci. 45: 135–148.

    Article  Google Scholar 

  • Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. U.K. 54: 825–855.

    Article  CAS  Google Scholar 

  • Falkowski, R. G., 1984. Physiological responses of phytoplankton to natural light regimes. J. Plankton Res. 6: 295–307.

    Article  Google Scholar 

  • Fernandez, E., E. Marahón, D. S. Harbour & R. D. Pingree, 1994. Phytoplankton carbon incorporation patterns and biochemical composition of particulate matter in the eastern North Atlantic subtropical region. J. Plankton Res. 16: 1627–1644.

    Article  Google Scholar 

  • Fichez, R., T. D. Jickells & H. M. Edmunds, 1992. Algal blooms in high turbidity, a result of the conflicting consequences of turbulence on nutrient cycling in a shallow water estuary. Estuar. coast. Shelf Sci. 35: 577–592.

    Article  CAS  Google Scholar 

  • Garcia-Soto, C., I. Madariaga, F. Villate & E. Orive, 1990. Day-to-day variability in the plankton community of a coastal shallow embayment in response to changes in river runoff and water turbulence. Estuar. coast. Shelf Sci. 31: 217–229.

    Google Scholar 

  • Gonzalez-Morales, A. T., G. Gaxiola-Castro & R. Lara-Lara, 1993. Daily photosynthetic parameters and biomass from size-fractionated phytoplankton off Baja California. Estuar. coast. Shelf Sci. 36: 147–158.

    Google Scholar 

  • Hama, T., N. Handa, M. Takahashi, F. Whitney & C. S. Wong, 1988. Change in distribution patterns of photosynthetically incorporated C during phytoplankton bloom in controlled experimental ecosystem. J. exp. mar. Biol. Ecol. 120: 39–56.

    Article  CAS  Google Scholar 

  • Harding, L. W., B. W. Meeson & T. R. Fisher, 1986. Phytoplankton production in two East coast estuaries: photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays. Estuar. coast. Shelf Sci. 23: 773–806.

    Article  CAS  Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, model and management. Can. J. Fish. aquat. Sci. 37: 877–900.

    Article  Google Scholar 

  • Heath, M. R., K. Richardson & T. KiOrboe, 1990. Optical assessment of phytoplankton nutrient depletion. J. Plankton Res. 12: 381–396.

    Google Scholar 

  • Hitchcock, G. L., 1983. Photosynthate partitioning in cultured marine phytoplankton. 1. Dinoflagellates. J. exp. mar. Biol. Ecol. 69: 21–36.

    Article  Google Scholar 

  • Hitchcock, G. L., J. C. Goldman & M. R. Dennett, 1986. Photosynthate partitioning in cultured marine phytoplankton: metabolic patterns in a marine diatom under constant and variable light intensities. Mar. Ecol. Prog. Ser. 30: 77–84.

    Article  CAS  Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometrie equations for determining chlorophylls a, b, cl and c2 in higher plants. algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Jones, T. W., T. C. Malone & S. Pike. 1990. Seasonal contrasts in diurnal carbon incorporation by phytoplankton size classes of the coastal plume of Chesapeake Bay. Mar. Ecol. Prog. Ser. 68: 129–136.

    Article  Google Scholar 

  • Konopka, A. (1982) Physiological ecology of a metalimnetic Oscillatoria rubescens population. Limnol. Oceanogr. 27: 1 154–1 161.

    Google Scholar 

  • Konopka, A. & M. Schnur. 1980. Effect of light intensity on macromolecular synthesis in cyanobacteria. Microb. Ecol. 6: 291–301.

    CAS  Google Scholar 

  • Li, W. K. W., H. E. Glover & I. Morris, 1980. Physiology of carbon photoassimilation by Oscillatoria thiebautii in the Caribbean Sea. Limnol. Oceanogr. 25: 447–456.

    Article  CAS  Google Scholar 

  • Litaker, W., C. S. Duke. B. E. Kenney & J. Ramus, 1987. Short-term environmental variability and phytoplankton abundance in a shallow estuary. I. Winter and summer. Mar. Biol. 96: 115–121.

    Google Scholar 

  • Litaker, W., C. S. Duke, B. E. Kenney & J. Ramus, 1993. Short-term environmental variability and phytoplankton abundance in a shallow estuary. II. Spring and fall. Mar. Ecol. Prog. Ser. 94: 141–154.

    Article  Google Scholar 

  • Lizon, F.. L. Seuront & Y. Lagadeuc, 1998. Photoadaptation and primary production study in tidally mixed coastal waters using a Lagrangian model. Mar. Ecol. Prog. Ser. 169: 43–54.

    Google Scholar 

  • Maclntyre, H. L., T. M. Kana & R. J. Geider, 2000. The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci. 5: 12–17.

    Article  Google Scholar 

  • Madariaga, I., 1989. Uhertasun-aldakuntzak Gernikako estuarioan. Elhuyar 15: 8–12.

    Google Scholar 

  • Madariaga. I., 1992. Interspecific differences in the photosynthetic carbon metabolism of marine phytoplankton. Mar. Biol. 114: 509–515.

    Article  Google Scholar 

  • Madariaga. I.. 1995. Photosynthetic characteristics of phytoplankton during the development of a summer bloom in the Urdaibai estuary, Bay of Biscay. Estuar. coast. Shelf Sci. 40: 559–575.

    Article  Google Scholar 

  • Madariaga, T. & E. Fernandez, 1990. Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J. mar. biol. Ass. U.K. 70: 531–543.

    Google Scholar 

  • Madariaga, I. & I. Joint, 1992. A comparative study of phytoplankton physiological indicators. J. exp. mar. Biol. Ecol. 158: 149–165.

    Article  Google Scholar 

  • Madariaga, I. & I. Joint, 1994. Photosynthesis and carbon metabolism by size-frectionated phytoplankton in the southern North Sea in early summer. Cont. Shelf Res. 14: 295–311.

    Google Scholar 

  • Madariaga, I. & E. Orive, 1989. Spatio-temporal variations of size-fractionated primary production in the Gernika estuary. J. exp. mar. Biol. Ecol. 127: 273–288.

    Google Scholar 

  • Madariaga, I. & A. Ruiz, 1988. Variabilidad a pequena escala temporal de la concentración de nutrientes disueltos en el estuario de Gernika (Otono e Invierno). Kobie 17: 49–56.

    Google Scholar 

  • Madariaga, I., E. Orive & G. T. Boalch, 1989. Primary production in the Gernika estuary during a summer bloom of the dinoflagellate Peridiniwn quinquecorne, Abé. Bot. Mar. 32: 159–165.

    Article  Google Scholar 

  • Madariaga, T., L. Gonzalez-Azpiri, F. Villate & E. Orive, 1992. Plankton responses to hydrological changes induced by freshets in a shallow mesotidal estuary. Estuar. coast. Shelf Sci. 35: 425–434.

    Article  Google Scholar 

  • Madariaga, I., F. Diez-Garagarza & M. Revilla, 1994. Caracterización hidrografica del estuario de Urdaibai durante el desarrollo de una floración fitoplanctónica estival. Kobie 22: 13–21.

    Google Scholar 

  • Mallin, M. A., H. W. Paerl, J. Rudek & P. W. Bates. 1993. Regulation of estuarine primary production of watershed rainfall and river flow. Mar. Ecol. Prog. Ser. 93: 199–203.

    Article  Google Scholar 

  • Maranón, E. & N. Gonzalez. 1997. Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Enriliania huxlevi in the North Sea. Mar. Ecol. Prog. Ser. 157: 61–77.

    Google Scholar 

  • Mana. J. & K. Heinemann, 1982. Photosynthesis response by phytoplankton to sunlight variability. Limnol. Oceanogr. 27: 1141–1153.

    Google Scholar 

  • Maurin, N., C. Amblard & G. Bourdier, 1999. Diel pattern of photosynthate partitioning in phytoplankton population in an oligomesotrophic lake. Int. Rev. Hydrobiol. 84: 567–577.

    CAS  Google Scholar 

  • Morris, I., 1981. Photosynthetic products. physiological state, and phytoplankton growth. Can. Bull. Fish. aquat. Sci. 210: 83–102.

    Google Scholar 

  • O’Donohue, M. J. H. & W. C. Dennison, 1997. Phytoplankton productivity response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient. Estuaries 20: 521–533.

    Google Scholar 

  • Orive, E.. A. Iriarte, I. Madariaga & M. Revilla, 1998. Phytoplankton blooms in the Urdaibai estuary during summer: physicochemical conditions and taxa involved. Oceanol. Acta 21: 293305.

    Google Scholar 

  • Platt, T. (ed.), 1981. Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. 210: 1–346.

    Google Scholar 

  • Sakshaug, E., 1980. Problems in the methodology of studying phytoplankton. In MoiTis, I. (ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley. CA: 57–89.

    Google Scholar 

  • S.A.S. Institute Inc., 1985. S.A.S. user’s guide: statistics (5 edn.). S.A.S. Institute Inc, Cary, NC.

    Google Scholar 

  • Schlüter, L., B. Riemann & M. Sondergaard, 1997. Nutrient limitation in relation to phytoplankton carotenoid/chlorophyll a ratios in freshwater mesocosms. J. Plankton Res. 19: 891–906.

    Article  Google Scholar 

  • Shephton, D. H. & G. P. Harris, 1984. Physical variability and phytoplankton communities. VI. Day-to-day changes in primary productivity and species abundance. Arch. Hydrobiol. 102: 155–175.

    Google Scholar 

  • Sinclair, M., D. V. Subba Rao & R. Couture, 1981. Phytoplankton temporal distributions in estuaries. Oceanol. Acta 4: 115–121.

    Google Scholar 

  • Smith, A. E. & I. Morris, 1980. Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean. Limnol. Oceanogr. 25: 865–872.

    Google Scholar 

  • Smith, R. E. H., R. J. Geider & T. Platt. 1984. Microplankton productivity in the oligotrophic ocean. Nature 311: 252–254.

    Article  CAS  Google Scholar 

  • Smith, R. E. H., M. Gosselin, G. Kattner, L. Legendre & S. Pesant, 1997. Biosynthesis of macromolecular and lipid classes by phytoplankton in the Northeast Water Polynya. Mar. Ecol. Prog. Ser. 147: 231–242.

    Article  CAS  Google Scholar 

  • Steeman-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. perm. explor. mer 18: 117–140.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. 167: 1–311.

    Google Scholar 

  • Taguchi, S. & E. A. Laws, 1987. Patterns and causes of temporal variability in the physiological condition of the phytoplankton community in Kaneohe Bay, Hawaii. J. Plankton Res. 9: 11431157.

    Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Theoretsche und Angewandte Limnologic 9: 1–38.

    Google Scholar 

  • Wainmann, B. C. & D. R. S. Lean, 1996. A comparison of photo- synthate allocation in lakes. J. Great Lakes Res. 22: 803–809.

    Article  Google Scholar 

  • Wainmann, B. C. & D. R. S. Lean, 1997. Can physico-chemical factors predict lipid synthesis by freshwater phytoplankton? Freshwater Biol. 38: 571–579.

    Google Scholar 

  • Zakardjian, B. A., Y. Gratton & A. F. Vezina. 2000. Late spring phytoplankton bloom in the Lower St. Lawrence Estuary: the flushing hypothesis revisited. Mar. Ecol. Prog. Ser. 192: 31–48.

    Article  Google Scholar 

  • Zevenboom, W., 1986. Ecophysiology of nutrient uptake, photosyn- thesis and growth. Can. Bull. Fish. aquat. Sci. 214: 391–422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Madariaga, I. (2002). Short-term variations in the physiological state of phytoplankton in a shallow temperate estuary. In: Orive, E., Elliott, M., de Jonge, V.N. (eds) Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2464-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2464-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6123-2

  • Online ISBN: 978-94-017-2464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics