Skip to main content

Seasonal change in the proportion of bacterial and phytoplankton production along a salinity gradient in a shallow estuary

  • Chapter
Nutrients and Eutrophication in Estuaries and Coastal Waters

Part of the book series: Developments in Hydrobiology ((DIHY,volume 164))

Abstract

We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 μg C 1−1) and production (0.1–16.0 μg C 1−1 h−1, 1.5–36.8 mg C m−2 h−1) as well as in phytoplankton abundance (50–1700 μg C 1−1) and primary production (0.1–512.9 μg C 1−1 h−1, 1.5–512.9 mg C m−2 h−1). Bacterial specific growth rate (0.10–1.68 d−1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d−1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively — generating seasonal ratios of 1–13 in bacterial specific growth rate — to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abreu, S. & A. Duarte, 1997. Biogest First Scientific Report Environment & Climate. Programme Contract no. ENV4–CT96–0213(partner 6 participation).

    Google Scholar 

  • Almeida, M. A., M. A. Cunha & F. Alcântara, 200la. Physiological responses of marine and brackish water bacterial assemblages in a tidal estuary (Ria de Aveiro, Portugal). Aquat. Microb. Ecol. 25: 113–125.

    Google Scholar 

  • Almeida, M. A., M. A. Cunha & F. Alcântara, 2001b. Factors influencing bacterial production in a shallow estuarine system. Microb. Ecol. 42(3): 416–426.

    Google Scholar 

  • Bjornsen, P. K., 1986. Automatic determination of bacterioplankton biomass by image analysis. Appl. environ. Microbiol. 51 (6): 1199–1204.

    CAS  Google Scholar 

  • Bligh, S. R, T. L. Bentley, D. Lefevre, C. Robinson, R. Rodrigues, J. Rowlands & R Williams, 1995. Phasing autotrophic and heterotrophic plankton metabolism in a temperate coastal ecosystem. Mar. Ecol. Prog. Ser. 128: 61–75.

    Article  Google Scholar 

  • Carlson, C. A. & H. W. Ducklow, 1996. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10: 69–85.

    Article  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Conan, P. C., E. Turley, M. Stuff, F. Pujo-Pay & Van Wambeke, 1999. Relationship between phytoplankton efficiency and the proportion of bacterial production to primary production in the Mediterranean Sea. Aquat. Microb. Ecol. 17: 131–144.

    Google Scholar 

  • Cunha, M. A., M. A. Almeida & F. Alcântara, 1999. Compartments of oxygen consumption in a tidal mesotrophic estuary. Acta Oecologica 20(4): 227–235.

    Google Scholar 

  • Cunha, M. A., M. A. Almeida & F. Alcântara, 2000. Patterns of variation of ectoenzimatic and heterotrophic bacterial activities along a salinity gradient in a shallow tidal estuarine. Mar. Ecol. Prog. Ser. 204: 1–12.

    Article  CAS  Google Scholar 

  • Cunha, M. A., M. A. Almeida & F. Alcântara. 2001. Short-time responses of the natural planktonic bacterial community of the changing water properties in an estuarine environment: ectoenzimatic activity, glucose incorporation and biomass production. Microb. Ecol. 42: 69–79.

    Google Scholar 

  • del Giorgio R, Y. T. Prairi & D. F. Bird, 1997. Coupling between rates of bacterial production and the abundance of metabolically active bacteria in lakes, enumerated using CTC reduction and flow cytometry. Microb. Ecol. 34: 144–154.

    Article  PubMed  Google Scholar 

  • del Giorgio, P. & J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Ann. Rev. Ecol. Syst. 29: 503–541.

    Article  Google Scholar 

  • Dias J. M., J. L. Lopes & I. Dekeyser, 2000. Tidal propagation in the Ria de Aveiro lagoon. Portugal. Phys. Chem. Earth. 25: 369–374.

    Article  Google Scholar 

  • Ducklow, H. W. & C. A. Carlson, 1992. Oceanic bacterial production. Adv. Microb. Ecol. 12: 113–181.

    Google Scholar 

  • Eppley, R. W., W. G. Harrison, S. W. Chisholm & E. Stewart, 1977. Particulate organic matter in surface waters off Southern California and its relationships to phytoplankton. J. mar. Res. 35: 671–696.

    Google Scholar 

  • Fernandez, M., M. Binai & F. An Wambeke, 1994. Bacterial biomass, heterotrophic production and utilisation of dissolved organic matter photosynthetically-produced in the Almeria-Oran front. J. mar. Sys. 5: 313–325.

    Article  Google Scholar 

  • Fuks, D., R. Precali & M. Devercovi, 1994. Bacterial production in the stratified Karstic estuary of the Krka River. Acta Adriat. 34 (1/2): 21–28.

    Google Scholar 

  • Goosen, N. K., R. van Rijswijk, J. Kromkamp & J. Peene, 1997. Regulation of annual variation in heterotrophic bacterial production in the Schelde estuary (SW Netherlands). Aquat. Microb. Ecol. 12: 223–232.

    Article  Google Scholar 

  • Hobbie, J. E., R. Daley & S. Jasper. 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. environ. Microbiol. 33: 1225–1228.

    CAS  Google Scholar 

  • Kuosa, H. & K. Kivi, 1989. Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 53: 93–100.

    Google Scholar 

  • Lignell, R., 1990. Excretion of organic carbon by phytoplankton: its relation to algal biomass, primary productivity and bacterial secondary productivity in the Baltic Sea. Mar. Ecol. Prog. Ser. 68: 85–99.

    Article  Google Scholar 

  • Mann, C. J. & R. G. Wetzel, 1996. Dissolved organic carbon and its utilisation in a riverine Wetland ecosystem. Biogeochemistry 31: 99–120.

    Google Scholar 

  • Moreira M. H., H. Queiroga, M. M. Machado & M. R. Cunha, 1993. Environmental gradients in a southern estuarine system: Ria de Aveiro, Portugal, Implications for soft bottom macrofauna colonization. Neth. J. aquat. Ecol. 27: 465–482.

    Article  Google Scholar 

  • Parsons. T. R., Y. Maita & C. M. Lalli, 1989. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford.

    Google Scholar 

  • Parsons, T. R., M. Takahashi & B. Hargrave, 1984. Biological Oceanic Processes, 3rd edn. Pergamon Press, Oxford.

    Google Scholar 

  • Reitner, B., A. Herzig & G. Herndl, 1999. Dynamics in bacterioplankton production in a shallow, temperate lake (Lake Neusiedl, Austria): evidence for dependence on macrophyte production rather than on phytoplankton. Aquat. Microb. Ecol. 19: 245–254.

    Article  Google Scholar 

  • Rheinheimer, G., 1981. Investigation on the role of bacteria in the food web of the Western Baltic. Kieler Meeresforsch., Sonderh 5: 284–290.

    Google Scholar 

  • Riegsbee, W., L. Simpson & J. Oliver, 1996. Detection of the viable but non-culturable state in Escherichia coli 0157:h7. J. Food Safety 16: 255–262.

    Article  Google Scholar 

  • Rodier, J., 1996. Lanalyse de l’eau: eaux naturelles, eaux résiduaires, eau de mer. 8 Edition, Dunod, Paris.

    Google Scholar 

  • Scavia, D. & G. A. Laird, 1987. Bacterioplankton in Lake Michigan: dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033.

    Google Scholar 

  • Shiah, F. & H. W. Ducklow, 1994. Temperature and substrate regulation of bacterial abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. 39: 1243–1258.

    Google Scholar 

  • Shiah, F. & H. W. Ducklow, 1995. Multiscale variability in bacterioplankton abundance, production, and specific growth rate in a temperate salt-marsh tidal creek. Limnol. Oceanogr 40 (1): 55–56.

    Article  CAS  Google Scholar 

  • Silva, J., 1994. Circulaçâo de âgua na Ria de Aveiro: contribuiçâo para o estudo da qualidade da âgua. Ph.D. Thesis. Universidade de Aveiro.

    Google Scholar 

  • Steemann-Nielsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Expl. Mer. 18: 117–140.

    Google Scholar 

  • Tabor, P. S. & R. A. Neihof, 1982. Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters. Appl. environ. Microbiol. 44 (4): 945–953.

    PubMed  CAS  Google Scholar 

  • Yentsch, C. S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10: 221–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Almeida, M.A., Cunha, M.A., Alcântara, F. (2002). Seasonal change in the proportion of bacterial and phytoplankton production along a salinity gradient in a shallow estuary. In: Orive, E., Elliott, M., de Jonge, V.N. (eds) Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2464-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2464-7_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6123-2

  • Online ISBN: 978-94-017-2464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics