Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 94))

Abstract

Neusiedler See, a shallow alkaline lake, has become increasingly eutrophic; this enrichment improved the nutritive situation of the herbivorous zooplankton leading to a higher standing stock. A multiple regression analysis of the long-term development of the crustacean plankton indicates that abiotic factors (i.e. wind, temperature) have the most important impact on the community in spring and autumn, biotic factors (i.e. food, predation) during the summer months. Currently an invertebrate (Leptodora kindti) and two planktivorous fish (Pelecus cultratus and Alburnus alburnus) control the population development of Diaphanosoma mongolianum during summer L. kindti predation acts on immature stages, whereas the fishes consume adult stages. L. kindti densities of 100 to 200 ind. × m−3 affect the prey population to a negligible extent; densities between 300 and 500 ind. × m−3 result in elimination rates of 5% to > 40% of the juvenile Diaphanosoma stock. The impacts by the invertebrate predator are pronounced but short-term events. Juvenile and underyearling fish eliminate 4–13% of the zooplankton in the open lake and 5–33% inshore; their predation pressure acts on all younger stages of the crustaceans. Planktivorous fish older than 0 + concentrate on the large food items (adult stages of the crustaceans). A. alburnus is able to consume 6–16% of the zooplankton standing stock during summer P. cultratus eliminates about 1–49% of D. mongolianum, 1–4% of A. spinosus and 1–31% of L. kindti. From May until August the position of the dominant predator changes, beginning with juvenile fish which are then followed by P. cultratus and then by A. alburnus. Predation by L. kindti is of importance in July and August; at that time it causes suppression of the juveniles of D. mongolianum,but, on the other hand, the older stages of L. kindti are endangered themselves by the predatory impact of planktivorous fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azoulay, B. & M. Gophen, 1992. Feeding habits of larval Mirogrex terraesanctae (Steinitz, 1952) in Lake Kinneret (Israel). I. Field study. Hydrobiologia 246: 243–249.

    Article  Google Scholar 

  • Bobek, M., 1990. Applied hydroacoustics in cyprinid research. Proc. Symp. `Fisheries in the year 2000’, Royal Holloway and Bedford New College: 287–297.

    Google Scholar 

  • Brabrand, A., B. Faafeng & J. P. M. Nilssen, 1986. Juvenile roach and invertebrate predators: delaying the recovery phase of eutrophic lakes by suppression of efficient filter-feeders. J. Fish Biol. 29: 99–106.

    Article  Google Scholar 

  • Branstrator, D. K. & J. T. Lehman, 1991. Invertebrate predation in Lake Michigan: Regulation of Bosmina longirostris by Leptodora kindti. Limnol. Oceanogr. 36: 483–495.

    Article  Google Scholar 

  • Browman, H. I., S. Kruse & W. J. O’Brien, 1989. Foraging behavior of the predaceous cladoceran, Leptodora kindti, and escape responses of their prey. J. Plankton Res. 11: 1075–1088.

    Article  Google Scholar 

  • Campbell, C. E., 1991. Prey selectivities of threespine sticklebacks (Gasterosteus aculeatus) and phantom midge larvae (Chaoborus spp.) in Newfoundland lakes. Freshwat. Biol. 25: 155–167.

    Google Scholar 

  • Carpenter, S. R. (ed.), 1988. Complex interactions in lake communities. Springer Verlag, New York, 283 pp.

    Chapter  Google Scholar 

  • Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.

    Article  Google Scholar 

  • Cummins, K. W., R. R. Costa, R. E. Rowe, G. A. Moshiri, R. M. Scanlon & R. K. Zajdel, 1969. Ecological energetics of a natural population of the predaceous zooplankter Leptodora kindtii Focke (Cladocera). Oikos 20: 189–223.

    Article  Google Scholar 

  • de Bernardi, R. & S. Canali, 1975. Population dynamics of pelagic cladocerans in Lago Maggiore. Mem. Ist. ital. Idrobiol. 32: 365–392.

    Google Scholar 

  • De Vries, D. R. & R. A. Stein, 1992. Complex interactions between fish and zooplankton: Quantifying the role of an open–water plantivore. Can. J. Fish. aquat. Sci. 49: 1216–1227.

    Article  Google Scholar 

  • Dokulil, M., 1984. Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedler See, Austria). Int. Revue ges. Hydrobiol. 69: 679–727.

    Article  Google Scholar 

  • Duncan, A., 1990. A review: limnological management and bio-manipulation in the London reservoirs. Hydrobiologia 200–201/Dev. Hydrobiol. 61: 541–548.

    Article  Google Scholar 

  • Elliott, J. M. & L. Persson, 1978. The estimation of daily rates of food consumption for fish. J. Anim Ecol. 47: 977–991.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1992. Can ecological theory be used to improve water quality? Hydrobiologia 243–244/Dev. Hydrobiol. 79: 283–291.

    Article  Google Scholar 

  • Gliwicz, Z. M. & J. Pijanowska, 1989. The role of predation in zooplankton succession. In U. Sommer (ed.), Plankton Ecology. Succession in Plankton Communities, Springer Verlag, New York, Berlin, Heidelberg: 253–296.

    Google Scholar 

  • G. Toth, L., K. V. Balogh & N. P.- Zankai, 1986. Significance and degree of abioseston consumption in the filter-feeder Daphnia galeata Sars am. Richard (Cladocera) in Lake Balaton. Arch. Hydrobiol. 106: 45–60.

    Google Scholar 

  • Hall, D. J., 1964. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45: 94–112.

    Google Scholar 

  • Hart, R. C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on com- munity structure in a turbid reservoir. Freshwat. Biol. 19: 123–139.

    Article  Google Scholar 

  • Herzig, A., 1974. Some population characteristics of planktonic crustaceans in Neusiedler See. Oecologia 15: 127–141.

    Article  Google Scholar 

  • Herzig, A., 1979. The zooplankton of the open lake. In Löffler, H. (ed.), Neusiedlersee, the limnology of a shallow lake in Central Europe. Dr W. Junk Publishers, The Hague: 281–335.

    Chapter  Google Scholar 

  • Herzig, A., 1980. Effects of food, predation and competition in the plankton community of a shallow lake (Neusiedler See, Austria). In M. Dokulil, H. Metz & D. Jewson (eds), Shallow lakes, Contributions to their Limnology. Developments in Hydrobiology 3. Dr W. Junk Publishers, The Hague: 45–51.

    Google Scholar 

  • Herzig, A., 1984. Temperature and life cycle strategies of Diaphanosoma brachyurum: an experimental study on development, growth, and survival. Arch. Hydrobiol. 101: 143–178.

    Google Scholar 

  • Herzig, A. & H. Winkler, 1983. Beiträge zur Biologie des Sichlings - Pelecus cultratus (L.). Österr. Fischerei 36: 113128.

    Google Scholar 

  • Herzig, A. & B. Auer, 1990. The feeding behaviour of Leptodora kindti and its impact on the zooplankton community of Neusiedler See (Austria). Hydrobiologia 198/ Dev. Hydrobiol. 60: 107–117.

    Article  Google Scholar 

  • Hillbricht–Ilkowska, A. & A. Karabin, 1970. An attempt to estimate consumption, respiration and production of Leptodora kindtii (Focke) in field and laboratory experiments. Pol. Arch. Hydrobiol. 17: 81–86.

    Google Scholar 

  • Hovenkamp, W., 1990. Instar-specific mortalities of coexisting Daphnia species in relation to food and invertebrate predation. J. Plankton Res. 12: 483–495.

    Article  Google Scholar 

  • Kerfoot, W. C., 1980. Commentary: transparency, body size and prey conspicuousness. In Kerfoot W. C. (ed.), Evolution and Ecology of Zooplankton Communities. The Univ. Press of New England, Hanover, New Hampshire: 609–617.

    Google Scholar 

  • Kirk, K. L., 1991. Suspended clay reduces Daphnia feeding rate: behavioural mechanisms. Freshwat. Biol. 25: 357–365.

    Article  Google Scholar 

  • Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.

    Article  Google Scholar 

  • Landau, R., M. Gophen & P. Walline, 1988. Larval Mirogrex terraesanctae (Cyprinidae) of Lake Kinneret (Israel): growth rate, plankton selectivities, consumption rates and interaction with rotifers. Hydrobiologia 169: 91–106.

    Article  Google Scholar 

  • Leitner, C., 1990. Einfluss von Turbulenz and Trübe auf Diaphanosoma brachyurum (Lievin) (Cladocera, Crustacea) im Neusiedler See. Diplomarbeit, Univ. Wien, 53 pp.

    Google Scholar 

  • Lunte, C. C. & C. Luecke, 1990. Trophic interactions of Leptodora in Lake Mendota. Limnol. Oceanogr. 35: 1091 1100.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a `top-down’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Article  Google Scholar 

  • Paloheimo, J. E., 1974. Calculation of instantaneous birth rate. Limnol. Oceanogr. 19: 692–694.

    Article  Google Scholar 

  • Persson, L., 1982. Rate of food evacuation in roach (Rutilus rutilus) in relation to temperature, and the application of evacuation rate estimates for studies on the rate of food consumption. Freshwater Biology 12: 203–210.

    Article  Google Scholar 

  • Post, J. R. & D. J. McQueen, 1987. The impact of planktivorus fish on the structure of a plankton community. Freshwat. Biol. 17: 79–89.

    Article  Google Scholar 

  • Southwood, T. R. E., 1978. Ecological Methods. 2nd edn. Chapman & Hall, London, 524 pp.

    Book  Google Scholar 

  • Tatrai, I. & A. Herzig, 1993. The effect of habitat structure on the feeding efficiency of young stages of razor fish (Pelecus cultratus): an experimental approach. Hydrobiologia, in press.

    Google Scholar 

  • Threlkeld, S. T., 1979. The midsummer dynamics of two Daphnia species in Wintergreen Lake, Michigan. Ecology 60: 165–179.

    Google Scholar 

  • Whiteside, M. C., 1989. 0 + fish as major factors affecting abundance patterns of littoral zooplankton. Verh. int. Ver. Limnol. 23: 1710–1714.

    Google Scholar 

  • Wright, J. C., 1965. The population dynamics and production of Daphnia in Canyon Ferry Reservoir. Limnol. Oceanogr. 10: 583–590.

    Article  Google Scholar 

  • Zurek, R., 1982. Effect of suspended materials on zoo-plankton. 2. Laboratory investigations of Daphnia hyalina Leydig. Acta Hydrobiol. 24: 233–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Mortensen E. Jeppesen M. Søndergaard L. Kamp Nielsen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herzig, A. (1994). Predator-prey relationships within the pelagic community of Neusiedler See. In: Mortensen, E., Jeppesen, E., Søndergaard, M., Nielsen, L.K. (eds) Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Developments in Hydrobiology, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2460-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2460-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4360-3

  • Online ISBN: 978-94-017-2460-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics