Skip to main content

The time course of phytoplankton biomass and related limnological factors in shallow and deep lakes: a multivariate approach

  • Chapter
Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 94))

  • 335 Accesses

Abstract

Weekly studies of phytoplankton biomass and environmental variables were made over one year in a shallow stratifying, hypertrophic E1 Porcal lake near Madrid (Spain). Data were collected on abiotic factors, primary production, biomass and phytoplankton losses and subjected to reduction by means of several principal component analyses. Furthermore, weekly data on the same variables were gathered from published studies on Überlinger See, an embayment of the much deeper, mesotrophic Lake Constance (Central Europe), and treated in the same way. The two first principal components of PCAs on biological variables explained more than 60% of overall variance in both lakes. They could be ascribed to phytoplankton production + biomass and photosynthetic physiology + phytoplankton losses, respectively. The ordination of the biological trajectories in the data space of the two first principal components revealed six stable states of phytoplankton biomass in the shallow lake and seven in the deep lake. The breakpoints between stable states could be due to environmental, abiotic variables in some cases but biological interactions were suspected to be the cause of the other breakpoints. The abiotic effects on phytoplankton biomass took longer to occur in the deep lake. Also, short-term dynamics (one–three weeks) were demonstrated for both phytoplankton communities.

A preliminary comparison between phytoplankton biomass dynamics in stratifying, shallow and deep lakes suggests that differences may be attributed partly to differences in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T. F. H., 1971. Multivariate approaches to the ecology of algae on terrestrial rock surfaces in North Wales. J. Ecol. 59: 803 - 826.

    Article  Google Scholar 

  • Allen, T. F. H. & J. F. Koonce, 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology 54: 1234 - 1246.

    Article  Google Scholar 

  • Allen, T. F. H., S. M. Bartell & J. F. Koonce, 1977. Multiple stable configurations in ordination of phytoplankton community change rates. Ecology 58: 1076 - 1084.

    Article  Google Scholar 

  • Allen, T. F. H., D. A. Sadowsky & N. Woodhead, 1984. Data transformation as a scaling operation in ordination of plankton. Vegetatio 56: 147 - 160.

    Google Scholar 

  • Allen, T. F. H. & T. B. Starr, 1982. Hierarchy. Perspectives for ecological complexity. Univ. Chicago Press, Chicago, 310 pp.

    Google Scholar 

  • Alvarez Cobelas, M., 1991. Optical limnology of a hypertrophic gravel-pit lake. Int. Revue ges. Hydrobiol. 76: 213-223.

    Google Scholar 

  • Alvarez Cobelas, M., 1992. Temperature and heat in a hypertrophie, gravel-pit lake. Arch. Hydrobiol. 125: 279-294.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio, M. Araúzo, P. Alarcón & V. Alario, 1987. Morfometría y composición química de una laguna de gravera. Limnetica 3: 91 - 95.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio & J. L. Velasco, 1990. Chemical limnology of a hypertrophie gravel-pit lake. Ann. Limnol. 26: 97-108.

    Google Scholar 

  • Alvarez Cobelas, M., F. J. Haering, J. L. Velasco & A. Rubio, 1992. The seasonal productivity of phytoplankton in a hypertrophie, gravel-pit lake. J. Plankton Res. 14: 979 - 996.

    Article  Google Scholar 

  • Chatfield, C., 1984. The Analysis of Time Series. An Introduction. Chapman & Hall, London, 286 pp.

    Google Scholar 

  • Dixon, W. J., M. B. Brown, L. Engelman, J. W. Frane, M. A. Hill, R. I. Jennrich & J. D. Toporek, 1983. BMDP Statistical Software. 1983. Printing with Additions. Univ. California Press, Berkeley, 734 pp.

    Google Scholar 

  • Elster, H. J., 1977: Der Bodensee. Bedrohung und Sanierungsmöglichkeiten eines Ökosystems. Naturwis senschaften 64: 207-215.

    Google Scholar 

  • Forsberg, B. R., 1985. The fate of planktonic primary production. Limnol Oceanogr. 30: 807 - 819.

    Article  CAS  Google Scholar 

  • Gauch, H. G., jr., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, 298 pp. Gilpin, M. E. & T. J. Case, 1976. Multiple domains of attraction in competition communities. Nature 261: 40-42.

    Google Scholar 

  • Harris, G. P., 1980. Spatial and temporal scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish. aquat. Sci. 37: 87-900.

    Article  Google Scholar 

  • Harris, G. P. & A. M. Trimbee, 1986. Phytoplankton population dynamics of a small reservoir: physical/biological coupling and the time scales of community change. J. Plankton Res. 8: 1011 - 1025.

    Article  Google Scholar 

  • Ibanez, F., 1981 Immediate detection of heterogeneities in continuous multivariate, oceanographic recordings. Application to time series analysis of changes in the bay of Villefranche sur Mer. Limnol. Oceanogr. 26: 336-349.

    Article  Google Scholar 

  • Jassby, A. D. & T. M. Powell, 1990. Detecting changes in ecological time series. Ecology 71: 2044 - 2052.

    Article  Google Scholar 

  • Kiefer, F., 1972: Naturkunde des Bodensees. Zweite Ed. Jan Thorbecke Verlag, Sigmaringen, 209 pp.

    Google Scholar 

  • Levandowsky, M., 1972. An ordination of phytoplankton populations in ponds of varying salinity and temperature. Ecology 53: 398 - 408.

    Article  Google Scholar 

  • Legendre, L. & P. Legendre, 1979. Ecologic Numérique, 2. Masson et cie, Paris, 253 pp.

    Google Scholar 

  • Margalef, R. & F. Gonzalez Bernaldez, 1969. Grupos de especies asociadas en el fitoplancton del Mar Caribe, NE de Venezuela. Inv. Pesq. 33: 287-302.

    Google Scholar 

  • Matthews, R. A., G. B. Matthews & W. J. Ehinger, 1991. Classification and ordination of limnological data: a comparison of analytical tools. Ecol. Modell. 53: 167-187.

    Google Scholar 

  • May, R. M., 1977: Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471 - 477.

    Article  Google Scholar 

  • Mayzaud, P., S. Taguchi & P. Laval, 1984. Seasonal patterns of seston characteristics in Bedford Basin, Nova Scotia, relative to zooplankton feeding: a multivariate approach. Limnol. Oceanogr. 29: 745-762.

    Google Scholar 

  • OECD, 1982. Eutrophication of Waters. Monitoring, Assessment and Control. OECD, Paris, 154 pp.

    Google Scholar 

  • Olah, J., 1975. Metalimnion function in shallow lakes. Symp. Biol. Hung. 15: 149-155.

    Google Scholar 

  • Preisendorfer, R. W., 1988. Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam, 425 pp.

    Google Scholar 

  • Prevosti, A., 1974. La distancia genética entre poblaciones. Miscel. Alcobé, January: 109 - 118.

    Google Scholar 

  • Reynolds, C. S., 1987. Community organization in the freshwater plankton. In J. H. R. Gee & P. S. Giller (eds), Organization of Communities, Past and Present. Blackwell Sci. Publ., Oxford: 297 - 325.

    Google Scholar 

  • Reynolds, C. S., 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 35: 13-31.

    Google Scholar 

  • Rohlf, F. J., 1992. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System. Version 1. 70. Exeter Software. Setauket, New York.

    Google Scholar 

  • Rojo, C., 1990. Estructura de la Comunidad Fitoplanctónica de la Laguna Hipertrófica `El Porcal' (Madrid). Ph. D. thesis. Univ. Literaria, Valencia, 389 pp.

    Google Scholar 

  • Rojo, C. & M. Alvarez Cobelas, 1991. Phytoplankton assemblages of a hypertrophie, gravel-pit lake. Verh. int. Ver. Limnol. 24: 1550-1555.

    Google Scholar 

  • Rojo, C. & M. Alvarez Cobelas, 1993. Hypertrophic phytoplankton and the intermediate disturbance hypothesis. 249/ Dev. Hydrobiol. 81: 43 - 57.

    Article  Google Scholar 

  • Seip, N. L. & L. G. Snipen, 1993. Interaction between phytoplankton and zooplankton in lakes. Verh. int. Ver. Limnol. 25: 474-477.

    Google Scholar 

  • Sephton, D. H. & G. P. Harris, 1984. Physical variability and phytoplankton communities: VI. Day to day changes in primary productivity and species abundance. Arch. Hydrobiol. 102: 155-175.

    Google Scholar 

  • Sheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200-201/Dev. Hydrobiol. 61: 475486.

    Google Scholar 

  • Sokal, R. R. & C. D. Michener, 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull. 22: 1409-1438.

    Google Scholar 

  • Sommer, U., 1987. Factors controlling the seasonal variation in phytoplankton species composition. A case study for a deep, nutrient-rich lake. Prog. Phycol. Res. 5: 123-178.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG*-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.

    Google Scholar 

  • Stabel, H. H., 1985. Mechanisms controlling the sedimentation sequence of various elements in prealpine lakes. In W. Stumm (ed.), Chemical Processes in Lakes. J. Wiley, New York: 143 - 167.

    Google Scholar 

  • Steele, J. H. (ed.), 1978. Spatial Patterns in Plankton Communities. Plenum Press, New York, 470 pp.

    Google Scholar 

  • Sterner, R. W., 1989. The role of grazers in phytoplankton succession. In U. Sommer (ed.), Plankton Ecology, Succession in Plankton Communities. Springer Verlag, Berlin: 107 - 170.

    Chapter  Google Scholar 

  • STSC, 1991. Statgraphics. Version 5. Rockville, Maryland. Tilzer, M. M., 1984. Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6: 309 - 324.

    Article  Google Scholar 

  • Tilzer, M. M., 1990. Specific properties of large lakes. In M. M. Tilzer & C. Serruya (eds), Large Lakes, Ecological Structure and Function. Springer Verlag, Berlin: 39 - 44.

    Chapter  Google Scholar 

  • Tilzer, M. M. & B. Beese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol. 50: 1-39.

    Google Scholar 

  • van Tongeren, O. F. R., L. van Liere, R. D. Gulati, G. Postema & P. J. Boesewinkel-De Bruyn, 1992. Multivariate analysis of the plankton communities in the Loosdrecht lakes: relationship with the chemical and physical environment. Hydrobiologia 233/Dev. Hydrobiol. 74: 105117.

    Google Scholar 

  • Uhlmann, D., 1980. Stability and multiple steady states of hypereutrophic ecosystems. In J. Barka & L. Mur (eds), Hypertrophic Ecosystems. Development in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 235 - 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Mortensen E. Jeppesen M. Søndergaard L. Kamp Nielsen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cobelas, M.A., Velasco, J.L., Rubio, A., Rojo, C. (1994). The time course of phytoplankton biomass and related limnological factors in shallow and deep lakes: a multivariate approach. In: Mortensen, E., Jeppesen, E., Søndergaard, M., Nielsen, L.K. (eds) Nutrient Dynamics and Biological Structure in Shallow Freshwater and Brackish Lakes. Developments in Hydrobiology, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2460-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2460-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4360-3

  • Online ISBN: 978-94-017-2460-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics