Skip to main content

Mode Localization Induced by a Nonlinear Control Loop

  • Chapter
Normal Modes and Localization in Nonlinear Systems

Abstract

We present the analysis of a nonlinear control system that is used to excite and maintain a specified amplitude of oscillation in the Jet Propulsion Laboratory vibratory gyroscope. This experimental application shows that nonlinear localization through active means can be implemented in a practical system when it is desirable to confine the response to a favorable mode. The closed-loop system response predicted by the model shows very close agreement with the experimental results for a significant range of controller parameters. We also experimentally demonstrate that the actively localized motion is eliminated through bifurcation, similar to what was observed in previous passive localization studies applied to extended flexible oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tang, T. K., Gutierrez, R. C., Wilcox, J. Z., Stell, C., Vorperian, V., Calvet, R., Li, W., Charkaborty, I., and Bartman, R., `Silicon bulk micromachined vibratory gyroscope’, in Solid-State Sensor and Actuator Workshop, Hilton Head, SC, June 3–6, 1996, pp. 288–293.

    Google Scholar 

  2. Tang, T. K., Gutierrez, R. C., Stell, C. B., Vorperian, V., Arakaki, G. A., Rice, J. T., Li, W. J., Charkaborty, I., Shcheglov, K., and Wilcox, J. Z., `A packaged silicon MEMS vibratory gyroscope for microspacecraft’, in IEEE Proceedings of The Tenth Annual International Workshop on Micro Electra Mechanical Systems, Nagoya, Japan, January 26–30, 1997, pp. 500–505.

    Google Scholar 

  3. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. V., Pilipchuk, V. N., and Zevin, A. A., Normal Modes and Localization in Nonlinear Systems, Wiley Interscience, New York, 1996.

    Book  MATH  Google Scholar 

  4. Vakakis, A. F. and Salenger, G., `Generation of localization in a discrete chain with periodic boundary conditions: Numerical and analytical results’, SIAM Journal on Applied Mathematics 58(6), 1998, 1730 1747.

    Google Scholar 

  5. Emad, J., Vakakis, A. E, and Miller, N., `Experimental nonlinear localization in a periodically forced repetitive system of coupled magnetoelastic beams’, Physica D 137, 2000, 192–201.

    Article  ADS  Google Scholar 

  6. King, M. E. and Vakakis, A F., `A very complicated structure of resonances in a nonlinear system with cyclic symmetry: Nonlinear forced localization’, Nonlinear Dynamics 7, 1995, 85–104.

    MathSciNet  Google Scholar 

  7. King, M. E, Aubrecht, J., and Vakakis, A. E, `Experimental nonlinear steady-state localization in coupled beams with active nonlinearities’, Journal of Nonlinear Science 5 (6), 1995, 485–502.

    Article  ADS  Google Scholar 

  8. Aubrecht, J., Vakakis, A. F., Tsao, T.-C., and Bentsman, J., `Experimental study of nonlinear transient motion confinement in a system of coupled beams’, Journal of Sound and Vibration 195 (4), 1996, 629–648.

    Article  ADS  Google Scholar 

  9. Hale, J., Ordinary Differential Equations, Krieger, Melbourne, FL, 1980.

    MATH  Google Scholar 

  10. Jordan, D. W. and Smith, P., Nonlinear Ordinary Differential Equations, Oxford Applied Mathematics and Computing Science Series, Oxford University Press, Oxford, 1987.

    Google Scholar 

  11. Andronov, A. A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Dover, New York, 1966.

    MATH  Google Scholar 

  12. Lawrence, A., Modern Inertial Technology: Navigation, Guidance, and Control, second edition, Springer-Verlag, New York, 1992.

    Google Scholar 

  13. M’Closkey, R. T., Gibson, J. S., and Hui, J., `Input/output dynamics of the JPL microgyroscope,’ in 1998 IEEE Conference on Decision and Control, Tampa, FL, December 7–10, 1998, pp. 4328–4332.

    Google Scholar 

  14. M’Closkey, R. T., Gibson, J. S., and Hui, J., `Model identification of the JPL microgyroscope,’ Proceedings of the ASME, Dynamic Systems and Control 64, 1998, 801–805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

M’Closkey, R.T., Vakakis, A., Gutierrez, R. (2001). Mode Localization Induced by a Nonlinear Control Loop. In: Vakakis, A.F. (eds) Normal Modes and Localization in Nonlinear Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2452-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2452-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5715-0

  • Online ISBN: 978-94-017-2452-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics