Skip to main content

Parametric Interaction of Optical Waves

  • Chapter
  • 446 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 104))

Abstract

One of the broadest classes of phenomena in non-linear optics is the transformation of frequency of an electromagnetic radiation propagating in the non-linear medium. Harmonics generation of the fundamental wave (pump), sum-frequency and difference-frequency mixing are classified among these phenomena [1]. Under sufficiently high intensity of a pump the polarisation of a medium is not a linear function of the electric field strength of the wave. If the frequencies of an electromagnetic field are not in resonance with atomic transition frequencies, one can use a standard perturbation theory to reveal this dependency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shen, Y.R.: The principles of non-linear optics, John Wiley Sons, New York, Chicester, Brisbane, Toronto, Singapore, 1984.

    Google Scholar 

  2. Bertein, F.: Bases de I’electronique quatnique, Editions Eyrolles, Pasis, 1969.

    Google Scholar 

  3. Bloembergen, N.: Non-linear optics, Benjamin, New York, 1965.

    Google Scholar 

  4. Yariv, A., and Yeh, P.: Optical waves in crystals. John Wiley Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1984

    Google Scholar 

  5. Armstrong, J.A., Bloembergen, N., Ducing, J., and Pershan, P.S.: Phys. Rev. 127 (1962), 1918

    Article  ADS  Google Scholar 

  6. Yariv, A., and Louisell, W.H.: Theory of the optical parametric oscillator, IEEE J Quant.Elect. QE-2 (1966), 418

    Google Scholar 

  7. Harris, S.E.: Tuneable optical parametric oscillators, Proc.IEEE 57 (1969), 2096–2113.

    Article  Google Scholar 

  8. Bjorkholm, J.E.: Optical SHG using a focused laser beam, Phys.Rev. 142 (1966), 126–136.

    Article  ADS  Google Scholar 

  9. Boyd, G.D., and Kleiman, D.A.: Parametric interaction of focused Gaussian light beams, JAppl.Phys. 39 (1968), 3597-

    Google Scholar 

  10. Fisher, R., and Kulevskii L.A.: Optical parametric generators of light (Review), Kvantov. Electron. (Moscow) 4 (1977), 245–289.

    Google Scholar 

  11. Butcher, P.N., and Cotter, D.: The Elements of Non-linear Optics“ University Press, Cambridge, 1990.

    Google Scholar 

  12. Chu, F.Y.F, and Scott, A.C.: Inverse scattering transform for the wave-wave scattering, Phys.Rev. Al2 (1975), 2060–2064.

    Google Scholar 

  13. Chu, F.Y.F.: Bäcklund transformation for the wave-wave scattering equations, Phys.Rev. Al2 (1975), 2065–2067.

    Google Scholar 

  14. Chiu, S.C.: On the self-induced transparency effect of the three-wave resonance process, JMath.Phys. 19 (1978), 168–176.

    Article  ADS  Google Scholar 

  15. Steudel, H.: Solitons in stimulated Raman scattering, Ann.Phys.(DDR) 34 (1977), 188–202.

    Article  ADS  Google Scholar 

  16. Gursey, Y.: Soliton solutions in stimulated Brillouin scattering, Phys.Rev. B24 (1981), 6147–6150.

    MathSciNet  ADS  Google Scholar 

  17. Gursey, Y.: Soliton solutions in stimulated Brillouin scattering. II., Phys.Rev. B26 (1982), 7015–7018.

    ADS  Google Scholar 

  18. Kaup, D.J.: Creation of a soliton out of dissipation, Physica D19 (1986), 123–134.

    MathSciNet  Google Scholar 

  19. Enns, R.H., and Rangnekar, S.S.: An application of ISTM to asymptotic laser pulse scattering, Phys.Lett. A81 (1981), 313–314.

    Article  Google Scholar 

  20. Enns, R.H., and Rangnekar, S.S.: Application of the inverse scattering transform method to stimulated Brillouin backscattering in a generator set-up: The Zakharov-Manakov solution, Canad.JPhys. 59 (1981), 1817–1828.

    Article  ADS  Google Scholar 

  21. Enns, R.H.: Zakharov-Manakov solution of the SBBS amplifier problem for non-rectangular envelopes. Phys.Lett. A88 (1982), 222–224.

    Article  Google Scholar 

  22. Enns, R.H.: Zakharov-Manakov solution of the stimulated Brillouin backscattering generator problem for nonrectangular envelopes, Canad.JPhys. 60 (1982), 1404–1413.

    Article  MathSciNet  ADS  Google Scholar 

  23. Enns, R.H.: Zakharov-Manakov solution of the stimulated Brillouin backscattering generator problem for “spliced potentials”, Canad.JPhys. 60 (1982), 1620–1629.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Enns, R.H.: Application of the inverse scattering transform method to SBBS in an inhomogeneous medium: Zakharov-Manakov solution, Canad.JPhys. 61 (1983), 604–611.

    Article  ADS  Google Scholar 

  25. Enns, R.H., and Rangnekar, S.$.: Zakharov-Manakov solution of the 3-wave explosive interaction problem, Canad..IPhys. 61 (1983), 1386–1400.

    Article  ADS  Google Scholar 

  26. Enns, R.H., and Rangnekar, S.S.: Inverse scattering and the three-wave interaction in non-linear optics: A review, IEEE J.Quant.Electron. QE-22 (1986), 1204–1214.

    Google Scholar 

  27. Sudhanshu S. Jha: Envelope -soliton propagation for three interacting coherent excitations in a dispersive medium, Pramana 11 (1978), 313–322.

    Article  Google Scholar 

  28. Ray, D. Shankar: 2 Tt -“pulse” for three-wave mixing, Phys.Lett. A102 (1984), 99–101.

    Article  MathSciNet  Google Scholar 

  29. Zakharov, V.E., and Manakov S.V.: On the resonant interaction of wave packets in non-linear media, Pis ‘ma y Zh.Eksp.Teor.Fiz. 18 (1973), 413–416.

    Google Scholar 

  30. Zakharov, V.E., and Manakov S.V.: On the theory of resonant interaction of wave packets in nonlinear media, Zh.Eksp. Tear. FL. 69 (1975), 1654–1673.

    MathSciNet  Google Scholar 

  31. Kaup, D.J.: The three-wave interaction–A nondispersive phenomenon, Stud. Appt, Math. 55 (1976), 9–44.

    MathSciNet  Google Scholar 

  32. Rieman, A.H., Bers, A., and Kaup, D.J.: Non-linear interactions of three wave packets in an inhomogeneous medium. Phys.Rev.Letts. 39 (1977), 245–248.

    Article  ADS  Google Scholar 

  33. Rieman, A.H., and Kaup, D.J.: Multi-shock solutions of random phase three-wave interactions, Phys.Fluid 24 (1981), 228–232.

    Article  ADS  Google Scholar 

  34. Case, K.M., and Chiu, S.C.: Backlund transformation for the resonant three-wave process. Phys Fluids 20 (1977), 746–749.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Enns, R.H., Guenther, D.B., and Rangnekar, S.S.: An application of the inverse scattering method to the 3-wave interaction in non-linear optics, Canad.JPhys. 58 (1980), 1468–1476.

    Article  ADS  Google Scholar 

  36. Kaup, D.J., Rieman, A.H., and Bers, A.: Space-time evolution of non-linear three-wave interactions. I. Interaction in homogeneous medium, Rev.Mod Phys. 51 (1979), 275–310.

    Article  ADS  Google Scholar 

  37. Rieman, A.H.: Space-time evolution of non-linear three-wave interactions. II. Interaction in a inhomogeneous medium, Rev.Mod.Phys. 51 (1979), 311–330.

    Article  ADS  Google Scholar 

  38. Kaup, D.J.: The soliton of the general initial value problem for the full three dimensional three-wave resonant interaction, Physica D3 (1981), 374–395.

    MathSciNet  MATH  Google Scholar 

  39. Kaup, D.J.: The lump solitons and the Backlund transfonnation for the three-dimensional three-wave resonant interaction,.1 Math.Phys. 22 (1981). 1176–1181.

    MathSciNet  MATH  Google Scholar 

  40. Kanashov, A.A., and Rubenchik. A.M.: On diffraction and dispersion effect on three wave interaction, Physica D4 (1981), 122–134.

    MATH  Google Scholar 

  41. Shulman, E.I.: On existence of numerable series of the integral of motion for system of three-dimensional resonant interacting wave packets, Teor.Mat.Fiz. 44 (1980), 224–228.

    MathSciNet  Google Scholar 

  42. Bakurov, V.G., The method of inverse problem for three-dimensional theory of the three-wave resonant interaction, Teor.Mat.Fiz. 76 (1988), 18–30.

    Article  MathSciNet  Google Scholar 

  43. Kaup, D.J.: Determining the final profiles from initial profiles for the full three-dimensional three-wave resonant interaction, Lect. Notes Phys. 130 (1980), 247–254

    Article  ADS  Google Scholar 

  44. Kaup, D.J.: A Method for solving the separable initial-value problem of the full three-dimensional three-wave interaction, Stud.Appl.Math. 62 (1980), 75–83.

    MathSciNet  ADS  MATH  Google Scholar 

  45. Craik, A.D.D.: Evolution in space and time of resonant wave triads. II. A class of exact solutions, Proc.Roy.Soc.(London), A363 (1978), 256–269.

    ADS  Google Scholar 

  46. Jurco, B.: Integrable generalizations of non-linear multiple three-wave interaction models, Phys.Lett. A138 (1989), 497–501.

    Article  MathSciNet  Google Scholar 

  47. Menyuk, C.R., Chen, H.H., and Lee, Y.C.: Restricted multiple three-wave interactions: Painleve analysis, Phys.Lett. A27 (1983), 1597–1611.

    MathSciNet  Google Scholar 

  48. Gromak, V.I., and Czegelnik V.V.: System of 3-wave resonant interaction and equations of P-type, Teor.Mat.Fiz. 78 (1989), 22–34.

    Article  Google Scholar 

  49. Kitaev, A.V.: On similarity reductions of the three-wave resonant system to the Painleve’ equations, JPhys. A23 (1990), 3453–3553.

    MathSciNet  Google Scholar 

  50. Ablowitz, M.J., and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM Phil., 1981.

    Google Scholar 

  51. Ohlcuma, K., and Wadati, M.: Quantum three wave interaction models, JPhys.Soc. Japan 53 (1984), 2899–2907.

    Article  ADS  Google Scholar 

  52. Wadati, M, and Ohkuma, K.: Bethe states for the quantum three wave interaction equation, JPhys.Soc. Japan 53 (1984), 1229–1237.

    Article  MathSciNet  ADS  Google Scholar 

  53. Ohkuma, K.: Thermodynamics of the quantum three wave interaction model,.1Phys.Soc.Japan 54 (1985), 2817–2828.

    MathSciNet  Google Scholar 

  54. Jurco, B.: On quantum integrable models related to non-linear quantum optics. An algebraic Bethe ansatz approach, JMath.Phys. 30 (1989), 1739–1743.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. Kulish, P.P.: Quantum non-linear wave interaction system, Physica D18 (1986), 360–364.

    MathSciNet  MATH  Google Scholar 

  56. Jurco, B.: Quantum integrable multiple three-wave interaction models. Phys.Lett. A143 (1990), 47–51.

    Article  MathSciNet  Google Scholar 

  57. Hirota, R.: An exact solution to “Simple Harmonic Generation” J.Phys.Soc.Japan 46 (1979), 1927–1928.

    Article  MathSciNet  ADS  Google Scholar 

  58. Hirota, R.: Exact solution of the sine-Gordon equation for multiple collisions of solitons, JPhys.Soc.Japan 33 (1972), 1459–1463.

    Article  ADS  Google Scholar 

  59. Hirota, R.: Exact solution of the modified Korteweg-de Vries equation for multiple collisions of soli-tons, JPhys-Soc.Japan 33 (1972), 1456–1458.

    Article  ADS  Google Scholar 

  60. Hirota R.: Direct method of finding exact solutions of non-linear evolution equations, in R.M.Miura (ed.) Baclund Transformations, the Inverse Scattering Method, Solitons and Their Applications (Lett. Notes in Math. 515 ), Springer-Verlag, Berlin, 1976, p. 40–68

    Google Scholar 

  61. Karamzin, Yu. N., and Filipchuk, N.S.: On existence parametric connected waveguides and solitons under tree-frequency interaction of waves, Zh. Prikl. Matemat. Tekhn.Fiz.(n Russia) (1977), Ne 1, 47–52

    Google Scholar 

  62. Karamzin, Yu. N., Sukhorukov A.P., and Filipchuk, N.S.: On existence of tree-frequency soliton solutions at second order approximation of dispersion theory, Izv. VUZov, radio iz. (in Russia), 21 (1978), 456–458.

    Google Scholar 

  63. Karamzin, Yu. N., Sukhorukov A.P., and Filipchuk, N.S.: On the new class of connected solitons in dispersive medium with quadratic non-linearity, Vestn. MGU, ser fiz. and astronom. (in Russia), 19 (1978), 91–98.

    MathSciNet  Google Scholar 

  64. Azimov, B.S., Sukhorukov A.P., and Trukhov D.V.: Parametrical multifrequensy solitons: creation, collisions and decay, Izv. ANSSSR, ser.fiz., (in Russia), 51 (1987), 229–233.

    Google Scholar 

  65. Romeiras, F.J.: Integrability of double three-wave interaction, Phys.Lett. A93 (1983), 227–229.

    Article  MathSciNet  Google Scholar 

  66. McKinstrie, C.J., and Luther, G.G.: Solitary-wave solitons of the generalized three-wave and four-wave equations, Phys.Lett. Al27 (1988), 14–18.

    Google Scholar 

  67. Menyuk, C.R., Chen, H.H., and Lee, Y.C.: Restricted multiple three-wave interactions: Integrable cases of this system and other related systems, JMath.Phys. 24 (1983), 1073–1079.

    Article  ADS  MATH  Google Scholar 

  68. Cheng, Y.: Symmetries and hierarchies of equations for the (2+1)-dimensional N-wave interaction, Physica D34 (1989), 277–288.

    MathSciNet  MATH  Google Scholar 

  69. Calogero, F.: Universality and integrability of the non-linear evolution PDE’s describing N-wave interactions, JMath.Phys. 30 (1989), 28–40.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Verheest, F.: Proof of integrability for five-wave interactions in a case with unequal coupling constants, JPhys. A21 (1988), L545 - L549.

    MathSciNet  ADS  MATH  Google Scholar 

  71. McKinstrie, C.J., and Luther, G.G.: Solitary-wave solitons of the generalized three-wave and four-wave equations, Phys.Lett. Al27 (1988), 14–18.

    Google Scholar 

  72. Zabolotski, A.A.: Dynamics of periodical wave in model with quadratic and cubic non-linearity, Zh.Eksp.Teor.Fiz. 107 (1995), 1100–1121.

    Google Scholar 

  73. Zabolotski, A.A.: Dense configuration of solitons in resonant four-wave mixing, Phys.Rev. A50 (1994), 3384–3393.

    Article  ADS  Google Scholar 

  74. Zabolotski, A.A.: Coherent four-wave mixing of the light pulses, Zh.Eksp.Teor.Fiz. 97 (1990), 127135.

    Google Scholar 

  75. Kaup, D.J., and Malomed, B.A.: The Resonant three-wave interaction in an inhomogeneous medium, Phys.Lett. A 169 (1992), 335–340.

    Article  MathSciNet  ADS  Google Scholar 

  76. Kaup, D.J., and Malomed, B.A.: Three-wave resonant interaction in a thin layer. Phys.Lett. A183 (1993), 283–288.

    Article  Google Scholar 

  77. Conwell, E.M.: Theory of second-harmonic generation in optical waveguides, IEEE I Quant.Electron. QE-9 (1973), 867–879.

    Google Scholar 

  78. Uesugi, N., and Kimura, T.: Efficient second-harmonic generation in three dimensional LiNbO1 optical waveguide, Appl.Phys.Lett. 29 (1976), 572–574.

    Article  ADS  Google Scholar 

  79. Sasaki. Y., and Ohmori, Y.: Phase-matched sum-frequency light generation in optical fibres, Appl.Phys.Lett. 39 (1981), 466–468.

    Google Scholar 

  80. Ohmori, Y., and Sasaki, Y.: Two-wave sum-frequency light generation in optical fibres, IEEE J.Quant. Electron. QE-1S (1982), 758–762.

    Google Scholar 

  81. Terhune, R.W., and Weinberger, D.A.: Second-harmonic generation in fibres,.LOpt.Soc.Amer. B4 (1987), 661–673.

    ADS  Google Scholar 

  82. Karpierz, M.A.: Coupled solitons in waveguides with second-and third-order nonlinearities, Opt. Letts. 20 (1995), 1677–1679.

    Article  ADS  Google Scholar 

  83. Torruellas, W.E., Zuo Wang, Tomer, L., and Stegeman, G.I.: Observation of mutual trapping and dragging of two-dimensional spatial solitary waves in a quadratic medium, Opt. Letts. 20 (1995), 1949–1951.

    Article  ADS  Google Scholar 

  84. Torner, L., Torruellas, W.E., Stegeman, G.I., and Menyuk, C.R.: Beam steering by trapping, Opt. Letts. 20 (1995), 1952–1954.

    Article  ADS  Google Scholar 

  85. Tomer, L., Mihalache, D., Mazilu, D., and Akhmediev, N.N.: Stability of spatial solitary waves in quadratic media, Opt. Letts. 20 (1995), 2183–2185.

    Article  ADS  Google Scholar 

  86. Trillo, S., Haelterman, M., and Sheppard, A.: Stable topological spatial solitons in optical parametric oscillators, Opt. Letts. 22 (1997), 970–972.

    Article  ADS  Google Scholar 

  87. Canva, M.T.G., Fuerst, R.A., Baboiu, S., Stegeman, G.I., and Assanto, G.: Quadratic spatial soliton generation by seeded downconversion of a strong harmonic pump beam, Opt. Letts. (1997), 1683–1685.

    Google Scholar 

  88. Steblina, V.V., Kivshar, Yu.S., and Buryak, A.V.: Scattering and spiralling of solitons in a bulk quadratic medium, Opt.Leu. 23 (1998), 156–158.

    Article  ADS  Google Scholar 

  89. Alexander, T.J., Buryak, A.V., and Kivshar, Y.S.: Stabilisation of dark and vortex parametric spatial solitons, Opt. Letts. 23 (1998), 670–672.

    Article  ADS  Google Scholar 

  90. Malomed, B.A., Drummond, P., He, H., Bemtson, A., Anderson, D., and Lisak, M.: Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity, Phys. Rev. E56 (1997), 4725–4736.

    ADS  Google Scholar 

  91. Conti, Cl., Trillo, S., and Assanto, G.: Optical gap solitons via second-harmonic generation: Exact solitary solutions, Phys.Rev. E57 (1998), 1251R - 1255R.

    ADS  Google Scholar 

  92. Sammut. R.A.. Buryak, A.V., and Kivshar, Y.S.: Modification of solitary waves by third-harmonic generation, Opt. Letts. 22 (1997), 1385–1387.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maimistov, A.I., Basharov, A.M. (1999). Parametric Interaction of Optical Waves. In: Nonlinear Optical Waves. Fundamental Theories of Physics, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2448-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2448-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5238-4

  • Online ISBN: 978-94-017-2448-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics