Skip to main content

Thermodynamics of Irreversible Processes

  • Chapter
Book cover Nonequilibrium Statistical Mechanics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 93))

Abstract

The thermodynamics of irreversible processes is a continuum theory of processes in matter with no reference to its molecular constitution. The reductionist tradition of natural philosophy, however, inevitably requires molecular theoretical foundations in the form of a particulate theory of matter based on the concept of particles (e.g., atoms and molecules) currently held in science. The kinetic theory of fluids has been primarily developed to provide macroscopic phenomena and thermodynamics of reversible and irreversible processes in continuum matter with molecular theoretical foundations. In such a theory a suitable kinetic equation is used for the distribution function of the system in the phase space or the Hilbert space, but in practice the solution of the kinetic equation is sought in such a way as to help understand at the thermodynamic level of description the macroscopic phenomena which we experience or observe in nature and in the laboratory. Therefore the solution is a particular solution corresponding to our thermodynamic level of understanding of the natural phenomena of interest. It is then inevitable that we examine what is really meant by the thermodynamic level of description in the first place. In the course of our scientific training we have been taught thermodynamics of reversible processes, and a great deal of our scientific reasoning and thinking processes is molded and influenced by equilibrium thermodynamics, especially when we are concerned with macroscopic phenomena in continuum matter, but the subject is not very useful for us when we face irreversible macroscopic processes. Consequently our first task in attempting to study the kinetic theory of matter is in establishing a theoretical formalism for macroscopic phenomena in continuum matter on the foundations of the laws of thermodynamics as we know of at present in the forms proposed by their formulators. We then develop a solution procedure for the kinetic equation for the distribution function of matter in the phase space or the Hilbert space depending on whether the classical or quantum mode of description is adopted for the development of the theory, in such a way that the thermodynamics of irreversible processes is described from the molecular viewpoint. We are thus motivated to develop first a thermodynamic theory of irreversible processes without using the molecular picture of matter. In this endeavor we take the position that the first task is to develop a logical structure within the framework of the original form of the laws of thermodynamics as phrased by their formulators. Since the most difficult and unsettled part of the theory is concerned with the mathematical representation of the second law of thermodynamics, we will devote close attention to it, but will be brief with the representation of the first law of thermodynamics and other conservation laws as well as the zeroth law regarding the temperature, since there is nothing new for us to add to them at present. Applications of the theory developed for irreversible processes will be deferred to a later chapter. We will assume that the substance does not have an intrinsic angular momentum. We also assume that the system consists of an r-component non-reactive mixture. Therefore the case of chemical reactions is excluded, but it is easy to modify the theory to include the case of chemical reactions. After completing the formulation of the theory under the assumptions taken, we will point out where the necessary modifications must be made to include chemical reactions. Since the kinetic theory part of this work does not deal with fluids with an angular momentum, we will not consider the irreversible thermodynamics of such fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics ( McGraw-Hill, New York, 1961 ).

    Google Scholar 

  2. H. B. Callen, Thermodynamics ( Wiley, New York, 1960 ).

    MATH  Google Scholar 

  3. J. F. Schooley, ed. in chief, Temperature (American Institute of Physics, New York, 1982), Vol.5, Parts 1 and 2.

    Google Scholar 

  4. Y. Elkana, The Discovery of Energy ( Hutchinson Educational, London, 1974 ).

    Google Scholar 

  5. R. B. Lindsay, ed., Energy: Historical Development of the Concept ( Dowden, Hutchinson, and Ross, Stroudburg, PA, 1975 ).

    Google Scholar 

  6. S. G. Brush, The Kind of Motion We Call Heat (North-Holland, Amsterdam, 1976), Vols. 1 and 2.

    Google Scholar 

  7. R. Clausius, Ann. d. Phys. (Leipzig) 125, 313 (1865).

    Google Scholar 

  8. M. Planck, Thermodynamics ( Dover, New York, 1945 ).

    Google Scholar 

  9. A. C. Eringen, ed., Continuum Physics (Academic, New York, 1975), Vol. 2.

    Google Scholar 

  10. B. C. Eu, Kinetic Theory and Irreversible Thermodynamics ( Wiley, New York, 1992 ).

    Google Scholar 

  11. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology ( Elsevier, Amsterdam, 1989 ).

    MATH  Google Scholar 

  12. J. C. Maxwell, Phil. Trans. Roy. Soc. London 157, 49 (1867).

    Google Scholar 

  13. S. Chapman, Proc. Roy. Soc. London A 93, 1 (1916–17).

    Google Scholar 

  14. S. Carnot, Refléxions sur la Puissance motrice du Feu et sur les Machines (Bachelier, Paris, 1824 ); English translation ( Peter Smith, Gloucester, MA, 1977 ).

    Google Scholar 

  15. R. Clausius, Phil. Mag. (Ser. 4) 2, 1, 102 (1851); 24, 81, 201 (1862).

    Google Scholar 

  16. Lord Kelvin (William Thomson), Mathematical and Physical Papers of William Thomson (Cambridge University Press, Cambridge, 1882), Vol. 1, pp. 100–106, pp. 113–140, pp. 174–200.

    Google Scholar 

  17. L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).

    Google Scholar 

  18. J. Meixner, Ann. d. Phys. (5) 39, 333 (1941); J. Meixner and H. G. Reik, Thermodynamik der irreversiblen Prozesses, in Handbuch der Physik, S. Flügge, ed. ( Springer, Berlin, 1959 ), Vol. 3.

    Google Scholar 

  19. I. Prigogine, Étude Thermodynamiques des Phénomènes Irreversible (Desor, Liège, 1947 ); Thermodynamics of Irreversible Processes ( Interscience, New York, 1967 ).

    Google Scholar 

  20. S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics ( North-Holland, Amsterdam, 1962 ).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Fluid Mechanics ( Pergamon, London, 1959 ).

    Google Scholar 

  22. J. Meixner, On the foundation of thermodynamics of processes, in A Critical Review of f Thermodynamics, E. B. Stuart, B. Gal-Or, and A. J. Brainard, eds. (Mono Book, Baltimore, 1970), p. 544; Rheol. Acta 12, 465 (1973).

    Google Scholar 

  23. R. Nettleton, Phys. Fluids 4, 1488 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  24. I. Müller, Z. Phys. 198, 329 (1967).

    Article  ADS  MATH  Google Scholar 

  25. G. Lebon, Bull. Acad. Roy. Belg. Cl. Sci. 64, 456 (1978).

    Google Scholar 

  26. G. Lebon, D. Jou, and J. Casas-Vazquez, J. Phys. A Math. Gen. 13, 275 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  27. B. C. Eu, J. Chem. Phys. 73, 2958 (1980).

    Google Scholar 

  28. L. S. Garcia-Colin and G. J. Fuentes y Martinez, J. Stat. Phys. 29, 387 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics ( Springer, Berlin, 1993 ).

    Book  MATH  Google Scholar 

  30. I. Müller and T. Ruggeri, Extended Thermodynamics ( Springer, Berlin, 1993 ).

    Book  MATH  Google Scholar 

  31. L. S. Garcia-Colin, M. Lopez de Haro, R. F. Rodriguez, J. Casas-Vazquez, and D. Jou, J. Stat. Phys. 37, 465 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  32. R. M. Velasco and L. S. Garcia-Colin, J. Non-Equil. Thermodyn. 18, 157 (1993).

    Article  ADS  MATH  Google Scholar 

  33. B. C. Eu, Chem. Phys. Lett. 143, 65 (1988).

    Google Scholar 

  34. W. T. Grandy, Phys. Rep. 62, 175 (1980).

    Google Scholar 

  35. B. C. Eu, Phys. Rev. E 51, 768 (1995).

    Google Scholar 

  36. I. N. Sneddon, Elements of Partial Differential Equations ( McGraw-Hill, New York, 1957 ).

    MATH  Google Scholar 

  37. D. G. B. Edelen, Applied Exterior Calculus ( Wiley, New York, 1985 ).

    MATH  Google Scholar 

  38. C. von Westenholz, Differential Forms in Mathematical Physics ( North-Holland, Amsterdam, 1978 ).

    MATH  Google Scholar 

  39. H. Flanders, Differential Forms ( Academic, New York, 1963 ).

    MATH  Google Scholar 

  40. M. Chen and B. C. Eu, J. Math. Phys. 34, 3012 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations ( Wiley, New York, 1971 ).

    Google Scholar 

  42. I. Procaccia, D. Ronis, M. A. Collins, J. Ross, and I. Oppenheim, Phys. Rev. A 19, 1290 (1979).

    Article  ADS  Google Scholar 

  43. H. Grad, Comm. Pure Appl. Math. 2, 325 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  44. Lord Rayleigh, Theory of Sound ( Dover, New York, 1945 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eu, B.C. (1998). Thermodynamics of Irreversible Processes. In: Nonequilibrium Statistical Mechanics. Fundamental Theories of Physics, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2438-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2438-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5007-6

  • Online ISBN: 978-94-017-2438-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics