Skip to main content

Interspecific interactions in temperate agroforestry

  • Chapter

Part of the book series: Advances in Agroforestry ((ADAG,volume 1))

Abstract

The ecological principles that define the competitive and complementary interactions among trees, crops, and fauna in agroforestry systems have received considerable research attention during the recent past. These principles have not yet, however, been adequately integrated and synthesized into an operational approach. This paper reviews the ecological and ecophysiological bases for interspecific interactions based on data from site-specific research and demonstration trials from temperate agroforestry systems, primarily from temperate North America. The review shows that information on ecological interactions in several temperate agroforestry systems is inadequate. It is recommended that the future research should focus on exploring new species and systems that have received little attention in the past. Priority research areas should include cultural practices and system designs to minimize interspecific competition and maximize environmental benefits such as improved water quality. Potential for genetic modification of components to increase productivity and reduce competition also needs to be explored. Processoriented models may be used increasingly to predict resource-allocation patterns and possible benefits for a suite of site and species combinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addy K.L. Gold A.J., Groffman P.M. and Jacinthe P.A. 1999. Ground water nitrate removal in subsoil of forested and mowed riparian buffer zones. J Environ Qual 28: 962–970.

    Article  CAS  Google Scholar 

  • Allen S.C. 2003. Nitrogen dynamics in a temperate alley cropping system with pecan (Carya illinoensis) and cotton (Gossypium sp.). Ph.D. Dissertation, University of Florida, Gainesville, Florida, USA.

    Google Scholar 

  • Armstrong R.A. and McGhee R. 1980. Competitive exclusion. Am Nat 115: 151–170.

    Article  Google Scholar 

  • Ashton P.S. 2000. Ecological theory of diversity and its applications to mixed species plantation systems. pp. 61–77. In: Ashton M.S. and Montagnini F. (eds), The Silvicultural Basis for Agroforestry Systems. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Bagley W.T. 1964. Responses of tomatoes and beans to windbreak shelter. J Soil Water Conserv 19: 71–73.

    Google Scholar 

  • Balandier P., Bergez, J.E. and Etienne, M. 2003. Use of the management-oriented silvopastoral model ALWAYS: Calibra-tion and evaluation. Agroforest Syst 57: 159–171.

    Article  Google Scholar 

  • Baraldi R., Bertazza G., Bogino J., Luna V. and Bottini R. 1995. The effect of light quality on Prunus cerasus II. Changes in hormone levels in plants grown under different light conditions. Photochem Photobiol 62: 800–803.

    CAS  Google Scholar 

  • Bharati L., Lee K.H., Isenhart T.M. and Schultz R.C. 2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforest Syst 56: 249–257.

    Article  Google Scholar 

  • Blackshaw J.K. and Blackshaw A.W. 1994. Heat-stress in cattle and the effect of shade on production and behavior. Aus J Exp Agr 34: 285–295.

    Article  Google Scholar 

  • Bonilla C.A., Muñoz J.F. and Vauclin M. 1999. Opus simulation of water dynamics and nitrate transport in a field plot. Ecol Model 122: 69–80.

    Article  CAS  Google Scholar 

  • Boring L.R. and Swank W.T. 1984. The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72: 749–766.

    Article  Google Scholar 

  • Brandle J.R., Hodges L. and Wight B. 2000. Windbreak practices. pp. 79–118. In: Garrett H.E., Rietveld W.J. and Fisher R.F. (eds), North American Agroforestry: An Integrated Science and Practice. ASA Inc., Madison, WI, USA.

    Google Scholar 

  • Brandle J.R. Hodges L. and Zhou, X. 2004. Windbreaks in sustainable agriculture (This volume).

    Google Scholar 

  • Brenner A.J. 1996. Microclimatic modifications in agroforestry. pp. 159–187. In: Ong C.K. and Huxley P. (eds), Tree–Crop Interactions: A Physiological Approach. CAB International. Wallingford, UK.

    Google Scholar 

  • Bugg R.L., Sarrantonio M., Dutcher J.D. and Phatak S.C. 1991. Understory cover crops in pecan orchards: possible management systems. Am J Alternative Agr 6: 50–62.

    Article  Google Scholar 

  • Burgess S.O., Adams M.A., Turner N.C. and Ong C.K. 1998. The redistribution of soil water by tree roots systems. Oecologia 115: 306–311.

    Article  Google Scholar 

  • Burner D.M. 2003. Effect of alley crop environment on orchardgrass and tall fescue herbage. Agron J 95: 1163–1171.

    Article  Google Scholar 

  • Burner D.M. and Brauer D.K. 2003. Herbage response to spacing of loblolly pine trees in a minimal management silvopasture in southeastern USA. Agroforest Syst 57: 69–77.

    Article  Google Scholar 

  • Caldwell M.M. and Richards J.H. 1989. Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79: 1–5.

    Article  Google Scholar 

  • Cannell M.G.R., van Noordwijk M. and Ong C.K. 1996. The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agroforest Syst 34: 27–31.

    Article  Google Scholar 

  • Chirko C.P., Gold M.A., Nguyen P.V. and Jiang J.P. 1996. Influence of direction and distance from trees on wheat yield and photosynthetic photon flux density (Qp) in a Paulownia and wheat intercropping system. photosynthetic photon flux density (Qp) in a Paulownia and wheat intercropping system. Forest Ecol Manag 83: 171–180.

    Article  Google Scholar 

  • Corak, S.J, Blevins, D.G. and Pallardy, S. G 1987. Water transfer in an alfalfa–maize association: survival of maize during drought. Plant Physiol 84: 582–586.

    Article  PubMed  CAS  Google Scholar 

  • Daniere C., Capellano A. and Moirud A. 1986. Dynamique de l’azote dans un peuplement natural d’Alnus incana L. Moench. Acta Oecologia/Oecologia Plant 7: 165–175.

    Google Scholar 

  • Davis E.F. 1928. The toxic principle of Juglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants. Am J Bot 15: 620.

    Google Scholar 

  • Davis J.E. and Norman J.M. 1988. Effects of shelter on plant water use. Agr Ecosyst Environ 22/23: 393–402.

    Article  Google Scholar 

  • Davis M.H. and Simmons S.R. 1994a. Tillering response of barley to shifts in light quality caused by neighboring plants. Crop Sci 34: 1604–1610.

    Article  Google Scholar 

  • Davis M.H. and Simmons S.R. 1994b. Far-red light reflected from neighboring vegetation promotes shoot elongation and accelerate flowering in spring barley plants. Plant Cell Environ 17: 829–836.

    Article  Google Scholar 

  • Dawson T.E. 1993. Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95: 565–574.

    Google Scholar 

  • Dupraz C., Simorte V., Dauzat M., Bertoni G., Bernadac A. and Masson P. 1999. Growth and nitrogen status of young walnuts as affected by intercropped legumes in a Mediterranean climate. Agroforest Syst 43: 71–80.

    Article  Google Scholar 

  • Fisher, R.F. 1978. Juglone inhibits pine growth under certain moisture regimes. Soil Sci Soc Am J 42: 801–803.

    Article  CAS  Google Scholar 

  • Funk D.T., Case P.J., Rietveld W.J. and Phares R.E. 1979. Effects of juglone on the growth of coniferous seedlings. Forest Sci 25: 452–454.

    Google Scholar 

  • García-Barrios L. and Ong C.K. 2004. Ecological interactions in simultaneous agroforestry systems in the tropics: management lessons, design tools and research needs (This volume).

    Google Scholar 

  • Garrett H.E. and McGraw R.L. 2000. Alley cropping practices. pp. 149–188. In: Garrett H.E., Rietveld W.J. and Fisher R.F. (eds), North American Agroforestry: An Integrated Science and Practice. ASA Inc., Madison, WI, USA.

    Google Scholar 

  • Gavloski J.E., Whitfield G.H. and Ellis C.R. 1992. Effect of restricted watering on sap flow and growth in corn (Zea mays L). Can J Plant Sci 72: 361–368.

    Article  Google Scholar 

  • Gillespie A.R., Jose S., Mengel D.B., Hoover W.L., Pope P.E., Seifert J.R., Biehle D.J., Stall T. and Benjamin T.J. 2000. Defining competition vectors in a temperate alley cropping system in the midwestern USA. 1. Production physiology. Agroforest Syst 48: 25–40.

    Article  Google Scholar 

  • Gillespie A.R., Miller B.K. and Johnson K.D. 1995. Effects of ground cover on tree survival and growth in filter strips of the Corn Belt region of the Midwestern U.S. Agric Ecosyst Environ 53: 263–270.

    Article  Google Scholar 

  • Hawke M.F. and Wedderburn M.E. 1994. Microclimate changes under Pinus radiata agroforestry regimes in New Zealand. Agr Forest Meteorol 71: 133–145.

    Article  Google Scholar 

  • Horton J.L. and Hart S.C. 1998. Hydraulic lift: a potentially important ecosystem process. Trends in Ecol Evolution 13: 232–235.

    Article  CAS  Google Scholar 

  • Hou Q., Brandle J., Hubbard K., Schoeneberger M., Nieto C. and Francis C. 2003. Alteration of soil water content consequent to root-pruning at a windbreak/crop interface in Nebraska, USA. Agroforest Syst 57: 137–147.

    Article  Google Scholar 

  • Hsiao T.C. 1973. Plant responses to water stress. Annu Rev Plant Phys 24: 519–570.

    Article  CAS  Google Scholar 

  • Imo M. and Timmer V.R. 2000. Vector competition analysis of a Leucaena-maize alley cropping system in western Kenya. Forest Ecol and Manag 126: 255–268.

    Article  Google Scholar 

  • Inderjit and Malik A.U. 2002. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser-Verlag, Berlin, 272 pp.

    Google Scholar 

  • Ishikawa C.M. and Beldsoe C. S. 2000. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: evidence for hydraulic lift. Oecologia 125: 459–465.

    Article  Google Scholar 

  • Itimu O.A. 1997. Distribution of Senna spectabilis, Gliricida sepium and maize (Zea mays L.) roots in an alley cropping trial on the Lilongwe Plain, Central Malawi. Ph.D. Thesis Wye College, University of London, Kent, UK.

    Google Scholar 

  • Jose S. 1997. Interspecific interactions in alley cropping: the physiology and biogeochemistry. Ph.D. Dissertation, Purdue University, West Lafayette, IN, USA.

    Google Scholar 

  • Jose S. and Gillespie A.R. 1995. Microenvironmental and physiological basis for temporal reduction in crop production in an Indiana alley cropping system. pp. 54–56. In: Ehrenreich J.H., Ehrenreich D.L. and Lee H.W. (eds), Growing A Sustainable Future. University of Idaho, Moscow, ID.

    Google Scholar 

  • Jose S. and Gillespie A.R. 1998a. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) growth and physiology. Plant Soil 203: 199–205.

    Article  CAS  Google Scholar 

  • Jose S. and Gillespie A.R. 1998b. Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the mid-western USA. Plant Soil 203: 191–197.

    Article  CAS  Google Scholar 

  • Jose S., Gillespie A.R., Seifert J.R. and Biehle D.J. 2000a. Defining competition vectors in a temperate alley cropping system in the mid-western USA. 2. Competition for water. Agroforest Syst 48: 41–59.

    Article  Google Scholar 

  • Jose S., Gillespie A.R., Seifert J.R., Mengel D.B. and Pope P.E. 2000b. Defining competition vectors in a temperate alley cropping system in the mid-western USA. 3. Competition for nitrogen and litter decomposition dynamics. Agroforest Syst 48: 61–77.

    Google Scholar 

  • Knowles R.L., Horvath G.C., Carter M.A. and Hawke M.F. 1999. Developing canopy closure model to predict overstorey/understorey relationships in Pinus radiata silvopastoral systems. Agroforest Syst 43: 109–119.

    Article  Google Scholar 

  • Kort J. 1988. Benefits of windbreaks to field and forage crops. Agric Ecosyst Environ 22/23: 165–191.

    Article  Google Scholar 

  • Kozlowski T.T. and Pallardy S.G. 1997. Physiology of Woody Plants. 2nd ed. Academic Press, San Diego, CA, USA, 411 pp.

    Google Scholar 

  • Krueger W.C. 1981. How a forest affects a forage crop? Rangelands 3: 70–71.

    Google Scholar 

  • Lambers H., Chapin III F.S. and Pons T.L. 1998. Plant Physiological Ecology. Springer-Verlag, New York, NY, USA, 540 pp.

    Google Scholar 

  • Lee K.H., Isenhart T.M. and Schultz R.C. 2003. Sediment and nutrient removal in an established multi-species riparian buffer. J Soil Water Conserv 58: 1–8.

    Google Scholar 

  • Leihner D.E., Schaeben R.E., Akond T.P. and Steinmiller N. 1996. Alley cropping on an Ultisol in sub-humid Benin. Part 2: Changes in crop physiology and tree crop competition. Agroforest Syst 34: 13–25.

    Article  Google Scholar 

  • Lehmann J., Peter I., Steglich C., Gebauer G., Huwe B. and Zech W. 1998. Belowground interactions in dryland agroforestry. Forest Ecol Manag 111: 157–169.

    Article  Google Scholar 

  • Lin C.H., McGraw R.L., George M.F. and Garrett H.E. 1999. Shade effects on forage crops with potential in temperate agroforestry practices. Agroforest Syst 44: 109–119.

    Article  Google Scholar 

  • Matson P.A., Parton W.J., Power A.G. and Swift M.J. 1997. Agricultural intensification and ecosystem properties. Science 277: 504–509.

    Article  PubMed  CAS  Google Scholar 

  • McNabb D.H. and Cromack K. 1985. Dinitrogen fixation by a mature Ceanothus velutinus Dougl. stand in the Western Oregon Cascades. Can J Microbiol 29: 1014–1021.

    Article  Google Scholar 

  • Miller A.W. and Pallardy S.G. 2001. Resource competition across the crop-tree interface in a maize-silver maple temperate alley cropping stand in Missouri. Agroforest Syst 53: 247–259.

    Article  Google Scholar 

  • Mitlohner F.M., Morrow J.L., Dailey J.W., Wilson S.C., Galyean M.L., Miller M.F. and McGlone J.J. 2001. Shade and water misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. J Anim Sci 79: 2327–2335.

    PubMed  CAS  Google Scholar 

  • Mobbs D.C., Cannell M.G.R., Crout N.M.J., Lawson G.J., Friend A.D. and Arah J. 1998. Complementarity of light and water use in tropical agroforests. 1. Theoretical model outline, performance and sensitivity. Forest Ecol Manag 102: 259–274.

    Article  Google Scholar 

  • Moffat A.S. 1997. Higher yielding perennials point the way to new crops. Science 274: 1469–1470.

    Article  Google Scholar 

  • Monteith J.L., Ong C.K. and Corlett J.E. 1991. Microclimate interactions in agroforestry systems. Forest Ecol Manag 45: 31–44.

    Article  Google Scholar 

  • Monteith J.L. 1994. Validity and utility of the correlation between intercepted radiation and biomass. Agr Forest Meteorol68: 213– 220.

    Google Scholar 

  • Murdoch W.W., Briggs C.J. and Nisbet R.M. 2003. Consumer-Resource Dynamics. Princeton University Press, Princeton, New Jersey, USA, 462 pp.

    Google Scholar 

  • Nair P.K.R., Buresh R.J., Mugendi D.N. and Latt C.R. 1999. Nutrient cycling in tropical agroforestry systems: myths and science. pp. 1–31. In: Buck L.E., Lassoie J.P. and Fernandes E.C.M. (eds), Agroforestry in Sustainable Agricultural Systems. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Nair V.D. and Graetz, D.A. 2004. Agroforestry as an Approach to Minimizing Nutrient Loss from Heavily Fertilized Soils: The Florida Experience (This volume).

    Google Scholar 

  • NeSmith D.S. and Ritchie J.T. 1992a. Effects of soil water deficits during tassel emergence on development and yield component of maize (Zea mays L.). Field Crops Res 28: 251–256.

    Article  Google Scholar 

  • NeSmith D.S. and Ritchie J.T. 1992b. Short-and long-term responses of corn to pre-anthesis soil water deficit. Agron J 84: 107–113.

    Article  Google Scholar 

  • Ng H.Y.F., Drury C.F., Serem V.K., Tan C.S. and Gaynor J.D. 2000. Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clay loam soil. Agr Water Manag 43: 111–131.

    Article  Google Scholar 

  • Nissen T.M., Midmore D.J. and Cabrera M.L. 1999. Aboveground and belowground competition between intercropped cabbage and young Eucalyptus torelliana. Agroforest Syst 46: 83–93.

    Article  Google Scholar 

  • Noble I.R. and Dirzo R. 1997. Forests as human dominated ecosystems. Science 277: 522–525.

    Article  CAS  Google Scholar 

  • Ong C.K., Black C.R., Marshall F.M. and Corlett J.E. 1996. Principles of resource capture and utilization of light and water. pp. 73–158. In: Ong C.K. and Huxley P. (eds), Tree–Crop Interactions: A Physiological Approach. CAB International. Wallingford, UK.

    Google Scholar 

  • Ong C.K., Corlett J.E., Singh R.P. and Black C.R. 1991. Above and belowground interactions in agroforestry systems. Forest Ecol Manag 45: 45–57.

    Article  Google Scholar 

  • Ong C.K., Deans J.D., Wilson J., Mutua J., Khan A.A.H. and Lawson E.M. 1999. Exploring belowground complementarity in agroforestry using sap flow and root fractal techniques. Agroforest Syst 44: 87–103.

    Google Scholar 

  • Paschke M.W., Dawson J.O. and David M.B. 1989. Soil nitrogen mineralization in plantations of Juglans nigra interplanted with actinorhizal Elaeagnus umbellata or Alnus glutinosa. Plant Soil 118: 33–42.

    Article  Google Scholar 

  • Payne W.J.A. 1990. An Introduction to Animal Husbandry in the Tropics, 4th ed. John Wiley, New York, NY, USA, 401 pp.

    Google Scholar 

  • Peng R.K., Incoll L.D., Sutton S.L., Wright C. and Chadwick A. 1993. Diversity of airborne arthropods in a silvoarable agro-forestry system. J Appl Ecol 30: 551–562.

    Article  Google Scholar 

  • Penuelas J. and Filella I. 2003. Deuterium labeling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ Exp Bot 49: 201–208.

    Article  Google Scholar 

  • Perry D.A. 1994. Forest Ecosystems. Johns Hopkins University Press, Baltimore, MD, USA, 649 pp.

    Google Scholar 

  • Price P.W., Bouton C.E., Gross P., McPherson B.A., Thompson J.N. and Weis A.E. 1980. Interactions among three trophic levels: in-fluence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11: 41–65.

    Article  Google Scholar 

  • Qi, X., Mize C.W., Batchelor W.D., Takle E.S. and Litvina I.V. 2001. SBELTS: a model of soybean production under tree shelter. Agroforest Syst 52: 53–61.

    Article  Google Scholar 

  • Rao M.R., Nair P.K.R. and Ong C.K. 1998. Biophysical interactions in tropical agroforestry systems. Agroforest Syst 38: 3–50.

    Article  Google Scholar 

  • Rhoades C.C., Nissen T.M. and Kettler J.S. 1997. Soil nitrogen dynamics in alley cropping and no-till systems on ultisols of the Georgia Piedmont, USA. Agroforest Syst 39: 31–44.

    Article  Google Scholar 

  • Rietveld W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. J Chem Ecol 9: 295–308.

    Article  CAS  Google Scholar 

  • Rizvi S.J.H., Tahir M., Rizvi V., Kohli R.K. and Ansari A. 1999. Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci18: 773–796.

    Google Scholar 

  • Robertson M.J. 1994. Relationships between internode elongation plant height and leaf appearance in maize. Field Crops Res 38: 135–145.

    Article  Google Scholar 

  • Robin C., Hay M.J.M., Newton P.C.D. and Greer D.H. 1994. Effect of light quality (red:far-red ratio) at the apical bud of the main stolon on morphogenesis of Trifolium repens L. Ann Bot-London 74: 119–123.

    Article  Google Scholar 

  • Rockwood D.L., Naidu C.V., Carter D.R., Rahmani M., Spriggs T.A., Lin C., Alker G.R., Isebrands J.G. and Segrest S.A. 2004. Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? (This volume).

    Google Scholar 

  • Root R. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43: 95–124.

    Article  Google Scholar 

  • Sanginga N., Vanlauwe B. and Danso S.K.A. 1995. Management of biological N2 fixation in alley cropping systems: Estimation and contribution to N balance. Plant Soil 174: 119–141.

    Article  CAS  Google Scholar 

  • Schroth G. 1999. A review of belowground interactions in agro-forestry, focusing on mechanisms and management options. Agroforest Syst 43: 5–34.

    Article  Google Scholar 

  • Schultz R.C., Colletti J.P., Isenhart T.M., Marquez, C.O. Simp-kins, W.W. and Ball C.J. 2000. Riparian forest buffer practices. pp. 189–281. In: Garrett H.E., Rietveld W.J. and Fisher R.F. (eds), North American Agroforestry: An Integrated Science and Practice. American Society of Agronomy, Madison, WI, USA.

    Google Scholar 

  • Schultz R.C, Isenhart T.M., Simpkins W.W. and Colletti J.P. 2004. Riparian Forest Buffers in Agroecosystems–Structure, Function and Management-Lessons Learned from the Bear Creek Watershed Project in Central Iowa, USA. (This volume).

    Google Scholar 

  • Seifert J.R. 1991. Agroforestry: The southern Indiana experience of growing oak, walnut, corn, and soybeans. pp. 70–71. In: Williams P. (ed.), Agroforestry in North America. Ministry of Agriculture and Food, Ontario, Canada.

    Google Scholar 

  • Seiter S., Ingham E.R., William R.D. and Hibbs D.E. 1995. Increase in soil microbial biomass and transfer of nitrogen from alder to sweet corn in an alley cropping system. pp. 56–158. In: Ehrenreich J.H., Ehrenreich D.L. and Lee H.W. (eds), Growing a sustainable future. University of Idaho, Boise, ID, USA.

    Google Scholar 

  • Sharifi M.R., Nilsen E.T. and Rundel P.W. 1982. Biomass and net primary productivity of Prosopis glandulosa (Fabaceae) in the Sonoran Desert of California. Am J Bot 69: 760–767.

    Article  Google Scholar 

  • Sharrow S.H. 1999. Silvopastoralism: Competition and facilitation between trees, livestock, and improved grass-clover pastures on temperate rainfed lands. pp. 111–130. In: Buck L.E., Las-soie J. and Fernandez E.C.M. (eds), Agroforestry in Sustainable Agricultural Systems. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Singh R.P., Ong C.K. and Saharan N. 1989. Above and below ground interactions in alley cropping in semiarid India. Agroforest Syst 9: 259–274.

    Article  Google Scholar 

  • Smith M.W., Arnold D.C., Eikenbary R.D., Rice N.R., Shiferaw A., Cheary B.S. and Carroll B.L. 1996. Influence of ground cover on beneficial arthropods in pecan. Biol Control 6: 164–176.

    Article  Google Scholar 

  • Smith M.W., Wolf M.E., Cheary B.S. and Carroll B.L. 2001. Allelo-pathy of bermudagrass, tall fescue, redroot pigweed, and cutleaf evening primrose on pecan. HortScience 36: 1047–1048.

    Google Scholar 

  • Ssekabembe C.K., Henderlong P.R. and Larson M. 1994. Soil mois-ture relations at the tree/crop interface in black locust alleys. Agrofor Syst 25: 135–140.

    Article  Google Scholar 

  • Stamps W.T. and Linit M.J. 1998. Plant diversity and arthropod communities: implications for temperate agroforestry. Agroforest Syst 39: 73–89.

    Article  Google Scholar 

  • Stamps W.T., Woods T.W., Linit M.J. and Garrett H.E. 2002. Arthropod diversity in alley cropped black walnut (Juglans nigra L.) stands in eastern Missouri, USA. Agroforest Syst 56: 167–175.

    Article  Google Scholar 

  • Taiz L. and Zeiger E. 1991. Plant Physiology. Benjamin/Cummings Pub Co. CA, USA. 792 pp.

    Google Scholar 

  • Thevathasan N.V and Gordon A.M. 2004. Ecology of tree intercrop-ping systems in the North temperate region: Experience from southern Ontario, Canada. (This volume).

    Google Scholar 

  • Thevathasan N.V., Gordon A.M. and Voroney R.P. 1998. Juglone (5-hydroxy-1,4 napthoquinone) and soil nitrogen transforma-tion interactions under a walnut plantation in southern Ontario, Canada. Agroforest Syst 44: 151–162.

    Article  Google Scholar 

  • Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Tilman D. 1985. The resource ratio hypothesis of plant succession. Am Nat 125: 827–852.

    Article  Google Scholar 

  • Tilman D. 1990. Mechanisms of plant competition for nutrients: The elements of a predictive theory of plant competition. pp. 117–141. In: Grace J.B. and Tilman D. (eds), Perspectives on Plant Competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Troeh F.R. and Thompson L.M. 1993. Soils and Soil fertility. 5th edition. Oxford University Press New York, NY, USA, 462 pp.

    Google Scholar 

  • Vandermeer J. 1989. The Ecology of Intercropping. Cambridge University Press. Cambridge, UK, 249 pp.

    Google Scholar 

  • van Noordwijk M. and Lusiana B. 1999. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. Agroforest Syst 43: 217–242.

    Article  Google Scholar 

  • van Noordwijk M., Lawson G., Soumaré A., Groot J.J.R. and Hairiah K. 1996. Root distribution of trees and crops: competition and/or complementarity. pp. 319–364. In: Ong C.K. and Huxley P. (eds), Tree–Crop Interactions: A Physiological Approach. CAB International, Wallingford, UK.

    Google Scholar 

  • Van Sambeek J.W., Ponder F. Jr. and Rietveld W.J. 1986. Legumes increase growth and alter foliar nutrient levels of black walnut saplings. Forest Ecol Manag 17: 159–167.

    Article  Google Scholar 

  • Wang Q. and Shogren J.F. 1992. Characteristics of the crop-paulownia system in China. Agric Ecosyst Environ 39: 145–152.

    Article  Google Scholar 

  • Wanvestraut R., Jose S., Nair P.K.R. and Brecke B.J. 2004. Competition for water in a pecan–cotton alley cropping system. Agroforest Syst 60: 167–179.

    Article  Google Scholar 

  • Waring H.D. and Snowdon P. 1985. Clover and urea as sources of nitrogen for the establishment of Pinus radiata. Aust Forest Res 15: 115–121.

    Google Scholar 

  • Williams P.A., Gordon A.M., Garrett H.E. and Buck L. 1997. Agroforestry in North America and its role in farming systems. pp. 90–84. In: Gordon A.M. and Newman S.M. (eds), Temperate Agroforestry Systems. CAB International, Wallingford, UK.

    Google Scholar 

  • Wojtkowski P. 1998. The Theory and Practice of Agroforestry Design. Science Publishers, Inc. Enfield, New Hampshire, USA, 282 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jose .

Editor information

P. K. R. Nair M. R. Rao L. E. Buck

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jose, S., Gillespie, A.R., Pallardy, S.G. (2004). Interspecific interactions in temperate agroforestry. In: Nair, P.K.R., Rao, M.R., Buck, L.E. (eds) New Vistas in Agroforestry. Advances in Agroforestry, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2424-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2424-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6673-2

  • Online ISBN: 978-94-017-2424-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics