Skip to main content

Morphogenetic factors in wood formation and differentiation

  • Chapter
New Perspectives in Wood Anatomy

Part of the book series: Forestry Sciences ((FOSC,volume 1))

Summary

The cambium is discussed and analysed in relation to hypotheses that consider the cambium to be a morphogenetic organiser and those that consider the cambium to be merely a cell maker that is entirely controlled by external influences. The question of whether the cambium is a single tier of initials or a multiseriate meristem is investigated in regard to its physiological and morphogenetic basis. The cambium undergoes three different types of cell divisions, viz. multiplicative, additive, and transformative. Multiplicative divisions result in new initials that enable the cambium to keep pace with the increase in girth of the stem while additive divisions are tangential-longitudinal divisions that give rise to xylem and phloem derivatives. Transformative divisions are those whereby the fusiform initial divides up to become a ray cell initial (or initials). These different types of division arise from altered planes of the mitotic spindle. The factors controlling these divisions are reviewed in relation to their space-time elements and their correlation of the overall growth pattern of the tree. The cambial stimulus and resulting morphogenetic domains are examined along with biophysical factors in relation to their effect on cambial activity, orientation and qualities of the cambial derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, I. W. 1919. Phenomena of cell division in the cambium of arborescent gymnosperms and their cytological significance. Proc. Nat. Acad. Sci. 5: 283–285.

    Google Scholar 

  • Bailey, I. W. 1920a. The formation of the cell plate in the cambium of the higher plants. Proc. Nat. Acad. Sci. 6: 197–200.

    Google Scholar 

  • Bailey, I. W. 1920b. The significance of the cambium in the study of certain physiological problems. J. Gen. Physiol. 2: 519–533.

    Google Scholar 

  • Bailey, I. W. 1920c. The cambium and its derivative tissues. II. Size variations of cambial initials in gymnosperms and angiosperms. Amer. J. Bot. 7: 355–367.

    Google Scholar 

  • Bailey, I. W. 1920d. The cambium and its derivative tissues. III. A reconnaissance of cytological phenomena in the cambium. Amer. J. Bot. 7: 417–434.

    Google Scholar 

  • Bailey, I. W. 1923. The cambium and its derivative tissues. IV. The increase in girth of the cambium. Amer. J. Bot. 10: 499–509.

    Google Scholar 

  • Bailey, I. W. 1930. The cambium and its derivative tissues. V. A reconnaissance of the vacuome in living cells. Zeitschr. Mikr. Anat. 10: 651–682.

    Google Scholar 

  • Bailey, I. W. and T. Kerr. 1934. The cambium and its derivative tissues. X. Structure, optical properties and chemical composition of the so-called middle lamella. J. Am. Arbor. 16: 273300.

    Google Scholar 

  • Bannan, M. W. 1950. The frequency of anticlinal divisions in fusiform cambial cells of Chamaecyparis. Amer. J. Bot. 37: 511–519.

    Google Scholar 

  • Bannan, M. W. 1951. The annual cycle of size changes in the fusiform cambial cells of Chamaecyparis and Thuja. Canad. J. Bot. 29: 421–437.

    Google Scholar 

  • Bannan, M. W. 1953. Further observations on the reduction of fusiform cambial cells in Thuja occidentalis L. Canad. J. Bot. 31: 63–74.

    Google Scholar 

  • Bannan, M. W. 1956. Some aspects of the elongation of fusiform cambial cells in Thuja occidentalis L. Canad. J. Bot. 34: 175–196.

    Google Scholar 

  • Bannan, M. W. 1957a. Girth increase in white cedar stems of irregular form. Canad. J. Bot. 35: 425–434.

    Google Scholar 

  • Bannan, M. W. 1957b. The relative frequency of the different types of anticlinal divisions in conifer cambium. Canad. J. Bot. 35: 875–884.

    Google Scholar 

  • Bannan, M. W. 1962. Cambial behavior with reference to cell length and ring width in Pinus strobus L. Canad. J. Bot. 40: 1057–1062.

    Google Scholar 

  • Bannan, M. W. 1967. Anticlinal divisions and cell length in conifer cambium. For. Prod. J. 17: 63–69.

    Google Scholar 

  • Bannaa, M. W. 1968a. Anticlinal divisions and the organization of conifer cambium. Bot. Gaz. 129: 107–113.

    Google Scholar 

  • Bannan, M. W. 1968b. Polarity in the survival and elongation of fusiform initials in conifer cambium. Canad. J. Bot. 46: 1005–1008.

    Google Scholar 

  • Bannan, M. W. 1970. A survey of cell length and frequency of multiplicative divisions in the cambium of conifers. Canad. J. Bot. 48: 1585–1589.

    Google Scholar 

  • Bannan, M. W. and M. Bindra. 1970. Variations in cell length and frequency of anticlinal division in the vascular cambium throughout a white spruce tree. Canad. J. Bot. 48: 1363–1371.

    Google Scholar 

  • Barghoorn, E. S. 1964. Evolution of cambium in geologic time. In: M. H. Zimmermann (ed.), The Formation of Wood in Forest Trees: 3–18. Acad. Press, New York.

    Google Scholar 

  • Barnett, J. R. 1973. Seasonal variation in the ultrastructure of the cambium in New Zealand grown Pinus radiata D. Don. Ann. Bot. 37: 1005–1011.

    Google Scholar 

  • Barnett, J. R. 1975. Seasonal variation of organelle members in sections of fusiform cambium cells of Pinus radiata D. Don. New Zeal. J. Bot. 13: 325–332.

    Google Scholar 

  • Basile, D. V. 1979. Hydroxyproline-induced changes in form, apical development and cell wall protein in the liverwort, Plagiochila arctica. Amer. J. Bot. 66: 776–783.

    Google Scholar 

  • Basile, D. V. 1980. A possible mode of action for morphoregulatory hydroxyproline-proteins. Bull. Torrey Bot. Club. 107: 325–338.

    Google Scholar 

  • Bates, G. W. and P. M. Ray. 1981. pH-dependent interactions between pea cell wall polymers possibly involved in wall deposition and growth. Plant Physiol. 68: 158–164.

    Google Scholar 

  • Berlyn, G. P. 1961. Factors affecting the incidence of reaction tissue in Populus deltoides Bartr. Iowa State J. Sci. 35: 367–424.

    Google Scholar 

  • Berlyn, G. P. 1962. Some size shape relationships between tree stems and crowns. Iowa State J. Sci. 37: 7–15.

    Google Scholar 

  • Berlyn, G. P. 1963. Methacrylate as an embedding medium for woody tissues. Stain Technol. 38: 23–28.

    Google Scholar 

  • Berlyn, G. P. 1964. Recent advances in wood anatomy: The cell walls in secondary xylem. For. Prod. J. 14: 467–476.

    Google Scholar 

  • Berlyn, G. P. 1970. Ultrastructural and molecular concepts of cell-wall formation. Wood and Fiber 2: 196–227.

    CAS  Google Scholar 

  • Berlyn, G. P. 1972. Seed germination and morphogenesis. In: T. T. Kozlowski (ed.), Seed Biology, Vol. 1: 223–312. Acad. Press, New York.

    Google Scholar 

  • Berlyn, G. P. 1979. Physiological control of differentiation of xylem elements. Wood and Fiber 11: 109–126.

    CAS  Google Scholar 

  • Berlyn, G. P. and R. C. Beck. 1980. Tissue culture as a technique for studying meristematic activity. In: C. H. A. Little (ed.), Control of Shoot Growth in Trees: 305–324. IUFRO Workshop Proc. Marit. For. Res. Center, Fredericton, New Brunswick, Canada.

    Google Scholar 

  • Berlyn, G. P., S. S. Dhillon and J. P. Miksche. 1979. Feulgen cytophotometry of pine nuclei. II. Effect of pectinase used in cell separation. Stain Technol. 54: 201–204.

    Google Scholar 

  • Berlyn, G. P. and J. P. Miksche. 1976. Botanical microtechnique and cytochemistry. Iowa State Univ. Press, Ames, Iowa.

    Google Scholar 

  • Bormann, F. H. and G. P. Berlyn (eds.). 1981. Age and growth rate of tropical trees. Yale Univ. School For. Environm. Studies, Bull. No. 94. New Haven, Connecticut.

    Google Scholar 

  • Boyd, J. D. 1977. Basic cause of differentiation of tension wood and compression wood. Austr. For. Res. 7: 121–143.

    Google Scholar 

  • Brown, C. L. 1964. The influence of external pressure on the differentiation of cells and tissues cultured in vitro. In: M. H. Zimmermann (ed.), The Formation of Wood in Forest Trees: 389404. Acad. Press, New York.

    Google Scholar 

  • Brown, C. L. and K. Sax. 1962. The influence of pressure on the differentiation of secondary tissues. Amer. J. Bot. 49: 683–691.

    Google Scholar 

  • Carlquist, S. 1981. Types of cambial activity and wood anatomy of Stylidium (Stylidiaceae). Amer. J. Bot. 68: 778–785.

    Google Scholar 

  • Catesson, A. M. 1964. Origine, fonctionnement et variations cytologiques saisonnieres du cambium de l’Acer pseudoplatanus L. (Acéracées). Ann. Sc. Nat. Bot. 12e sér. 5: 229–498.

    Google Scholar 

  • Catesson, A. M. 1980a. The vascular cambium. In: C. H. A. Little (ed.), Control of Shoot Growth in Trees: 12–40. IUFRO Workshop Proc. Marit. For. Res. Center, Fredericton, New Brunswick, Canada.

    Google Scholar 

  • Catesson, A. M. 1980b. Le cycle saisonnier des cellules cambiales chez quelques Feuillus. Actualités Botaniques (not seen, quoted in Catesson 1980a op. cit.).

    Google Scholar 

  • Catesson, A. M. and J. C. Roland. 1981. Sequential changes associated with cell wall formation and fusion in the vascular cambium. IAWA Bull. n. s. 2: 151–162.

    Google Scholar 

  • Cleland, R. 1971. Cell wall extension. Ann. Rev. Plant Physol. 22: 197–220.

    Google Scholar 

  • Cleland, R. 1973. Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proc. Nat. Acad. Sci. 70: 3092–3093.

    Google Scholar 

  • Cleland, R. 1976. Kinetics of hormone-induced H` excretion. Plant Physiol. 58: 210–213. Cleland, R. 1977. The control of cell enlargement. In: D. H. Jennings (ed.), Integration of Activity in the Higher Plant. Soc. Exp. Biol. Symp. 31: 101–115.

    Google Scholar 

  • Cleland, R. and A. Karines. 1967. A possible role of hydroxyproline-containing proteins in the cessation of cell elongation. Plant Physiol. 42: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Cottignies, A. 1979. The blockage in the G1 phase of the cell cycle in the dormant shoot apex of ash. Planta 147: 15–19.

    Article  CAS  Google Scholar 

  • Cronshaw, J. 1965. The formation of the wart structure in tracheids of Pinus radiata. Protoplasma 60: 233–242.

    Article  CAS  Google Scholar 

  • Cronshaw, J. and J. B. Bouck. 1965. The fine structure of differentiating xylem elements. J. Cell Biol. 24: 415–431.

    Article  PubMed  CAS  Google Scholar 

  • Dadswell, H. W. 1963. Tree growth-wood property inter-relationships. I. Need for knowledge of effects of growth conditions on cell structure and wood properties. In: T. E. Maki (ed.), Proc. special Field Institute in Forest Biology: 5–11. School For., North Carolina State Univ., Raleigh, N. C.

    Google Scholar 

  • Dhillon, S. S., G. P. Berlyn and J. P. Miksche. 1978. Nuclear DNA content in populations of Pinus rigida. Amer. J. Bot. 65: 192–196.

    Google Scholar 

  • Dobbins, D. R. 1971. Studies on anomalous cambial activity in the Bignoniaceae. II. A case of differential production of vascular tissues. Amer. J. Bot. 49: 2107–2110.

    Google Scholar 

  • Dobbins, D. R. 1981. Anomalous secondary growth in lianas of the Bignoniaceae is correlated with the vascular pattern. Amer. J. Bot. 68: 142–144.

    Google Scholar 

  • Esau, K. 1948. Phloem structure in the grapevine and its seasonal changes. Hilgardia 18: 217–296. Esau, K. 1977. Anatomy of seed plants. John Wiley and Sons, New York.

    Google Scholar 

  • Evert, R. F. 1961. Some aspects of cambial development in Pyrus communis. Amer. J. Bot. 48: 479–488.

    Google Scholar 

  • Farooqui, P. and A. W. Robards. 1979. Seasonal changes in the ultrastructure of cambium of Fagus silvatica L. Proc. Ind. Acad. Sci. B 88: 463–472.

    Google Scholar 

  • Ford, E. D. and A. W. Robards. 1976. Short term variation in tracheid development in the early wood of Picea sitchensis. In: P. Baas, A. J. Bolton and D. M. Catling (eds.), Wood Structure in Biological and Technological Research: 212–221. Leiden Bot. Series No. 3. Leiden Univ. Press, The Hague.

    Google Scholar 

  • Fosket, D. E. 1968. Cell division and the differentiation of wound-vessel members in cultured stem segments of Coleus. Proc. Nat. Acad. Sci. ( USA ) 59: 1089–1096.

    Google Scholar 

  • Fosket, D. E. 1970. The time course of xylem differentiation and its relation to deoxyribonucleic acid synthesis in cultured Coleus stem segments. Plant Physiol. 46: 64–68.

    Article  PubMed  CAS  Google Scholar 

  • Fosket, D. E. 1972. Meristematic activity in relation to wound xylem differentiation. In: M. H. Miller and C. C. Kuehnert (eds.), The Dynamics of Meristem Cell Populations: 33–50. Plenam Press, New York.

    Chapter  Google Scholar 

  • Fosket, D. E. and J. G. Torrey. 1969. Hormonal control of cell proliferation and xylem differentiation in cultured tissues of Glycine max var. Bioloxi. Plant Physiol. 44: 871–880.

    Google Scholar 

  • Ghouse, A. K. M. and M. Yunus. 1974. The ratio of ray and fusiform initials in some woody species of the Ranalian complex. Bull. Torrey Bot. Club 101: 363–366.

    Google Scholar 

  • Ghouse, A. K. M. and M. Yunus. 1976. Ratio of ray and fusiform initials in the vascular cambium of certain leguminous trees. Flora 165: 23–28.

    Google Scholar 

  • Gill, A. M. 1971. Endogenous control of growth-ring development in Avicennia. For. Sci. 17: 462–465.

    Google Scholar 

  • Goldsmith, M. H. M. 1977. The polar transport of auxin. Ann. Rev. Plant Physiol 28: 439–478.

    Google Scholar 

  • Guilfoyle, T. J., C. Y. Lin, Y. M. Chen, R. T. Nagao and J. L. Key. 1975. Enhancement of soybean RNA polymerase I by auxin. Proc. Nat. Acad. Sci. ( USA ) 72: 69–72.

    Google Scholar 

  • Gunckel, J. E. and K. V. Thimann. 1949. Studies of development in long shoots and short shoots of Ginkgo biloba. Amer. J. Bot. 36: 145–151.

    Google Scholar 

  • Hartig, T. 1853. Ãœber die Entwickelung des Jahrringes der Holzpflanzen. Bot. Zeitung 11: 553556, 569–579.

    Google Scholar 

  • Hartig, R. 1901. Holzuntersuchungen, Altes und Neues. Julius Springer, Berlin.

    Google Scholar 

  • Hejnowicz, Z. 1961. Anticlinal division, intrusive growth, and loss of fusiform initials in non-storied cambium. Acta Soc. Bot. Pol. 30: 729–748.

    Google Scholar 

  • Hejnowicz, Z. 1964. Orientation of the partition in pseudotransverse division in cambia of some conifers. Canad. J. Bot. 42: 1685–1691.

    Google Scholar 

  • Hejnowicz, Z. 1968. The structural mechanism involved in the changes of grain in timber. Acta Soc. Bot. Pol. 37: 347–365.

    Google Scholar 

  • Hejnowicz, Z. 1971. Upward movement of the domain pattern in the cambium producing wavy grain in Picea excelsa. Acta Soc. Bot. Pol. 40: 499–512.

    Google Scholar 

  • Hejnowicz, Z. 1973. Morphogenetic waves in cambia of trees. Plant Sci. Letters 1: 359–366. Hejnowicz, Z. 1974. Study of migrating orientational domain patterns in cambia of trees as a

    Google Scholar 

  • morphogenic wave phenomenon and its manifestation in wood grain. Report No. 2. Bot. Inst. Univ. Wroclaw, Poland.

    Google Scholar 

  • Hejnowicz, Z. 1975a. Study of migrating orientational domain pattern in cambia of trees as a morphogenetic wave phenomenon and its manifestation in wood grain. Report No. 4. Bot. Inst. Univ. Wroclaw, Poland.

    Google Scholar 

  • Hejnowicz, Z. 1975b. A model for morphogenetic map and clock. J. Theor. Biol. 54: 345–362.

    Google Scholar 

  • Hejnowicz, A. and J. Krawczyszyn. 1969. Oriented morphogenetic phenomena in cambium of broad leaved trees. Acta Soc. Bot. Pol. 38: 547–560.

    Google Scholar 

  • Hejnowicz, Z. and J. A. Romberger. 1973. Migrating cambial domains and the origin of wavy grain in xylem of broad-leaved trees. Amer. J. Bot. 60: 209–222.

    Google Scholar 

  • Hollis, C. A. and H. B. Tepper. 1971. Auxin transport within intact dormant and active white ash shoots. Plant Physiol. 48: 146–149.

    Article  PubMed  CAS  Google Scholar 

  • Huber, B. 1948. Physiologie der Rindenschalung bei Fichte und Eichen. Forstwiss. Centralbi. 67: 129–164.

    Google Scholar 

  • Isebrands, J. G. and P. R. Larson. 1973. Some observations on the cambiai zone in cotton wood. IAWA Bull. 1973 /3: 3–9.

    Google Scholar 

  • Itoh, T. 1971. On the ultrastructure of dormant and active cambium of conifers. Wood Res. 51: 33–45.

    Google Scholar 

  • Jost, L. 1891. Ãœber Dickenwachstum und Jahresringbildung. Bot. Zeitung 49: 482–499.

    Google Scholar 

  • Jost, L. 1893. Ãœber die Beziehungen zwischen der Blattentwickelung und der Gefässbildung in der Pflanze. Bot. Zeitung 51: 89–138.

    Google Scholar 

  • Kellogg, R. M. and G. L. Steucek. 1977. Motion-induced growth effects in Douglas fir. Canad. J. For. Res. 7: 94–99.

    Google Scholar 

  • Kennedy, R. W. and J. L. Farrar. 1965. Tracheid development in tilted seedlings. In: W. A. Côté (ed.), Cellular Ultrastructure of Woody Plants: 419–453.

    Google Scholar 

  • Syracuse Univ. Press, Syracuse. Kramer, P. J. and T. T. Kozlowski. 1979. Physiology of woody plants. Acad. Press, New York. Krawczyszyn, J. 1972. Movement of the cambial domain pattern and mechanism of formation of interlocked grain in Platanus. Acta Soc. Bot. Pol. 41: 443–461.

    Google Scholar 

  • Lamport, D. T. A. 1963. O2’ fixation into hydroxyproline of plant cell wall protein. J. Biol. Chem. 238: 1438–1440.

    Google Scholar 

  • Lamport, D. T. A. 1965. The protein component of primary cell walls. Adv. Bot. Res. 2: 151–218. Lamport, D. T. A. 1967. Hydroxyproline-0-glycosidic linkage of the plant glycoprotein extension. Nature 216: 1322–1324.

    Google Scholar 

  • Lamport, D. T. A. 1969. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochem. 8: 1155–1163.

    Article  CAS  Google Scholar 

  • Lamport, D. T. A. 1970. Cell wall metabolism. Ann. Rev. Plant Physiol. 21: 235–270.

    Google Scholar 

  • Larson, P. R. 1962. Auxin gradients and the regulation of cambial activity. In: T. T. Kozlowski (ed.), Tree Growth: 97–117. Ronald Press, New York.

    Google Scholar 

  • Little, C. H. A. 1981. Effect of cambial dormancy state on the transport of [1–14C] indol-3-ylacetic acid in Abies balsamea shoots. Canad. J. Bot. 59: 342–348.

    Google Scholar 

  • Little, C. H. A. and P. F. Wareing. 1981. Control of cambial activity and dormancy in Picea sitchensis by indol-3-ylacetic and abscisic acids. Canad. J. Bot. 59: 1480–1492.

    Google Scholar 

  • Mahmood, A. 1968. Cell groupings and primary wall generation in the cambial zone, xylem, and phloem in Pinus. Austr. J. Bot. 16: 177–195.

    Google Scholar 

  • Mahmood, A. 1971. Numbers of initial-cell divisions as a measure of activity in the yearly cambial growth pattern in Pinus. Pakistan J. For. 21: 27–42.

    Google Scholar 

  • Mia, A. J. 1970. Fine structure of active, dormant, and aging cambial cells in Tilia americana. Wood Sci. 3: 34–42.

    Google Scholar 

  • Mirov, N. T. 1941. Distribution of growth hormone on shoots of two species of pine. J. Forestry 39: 457–464.

    CAS  Google Scholar 

  • Murmanis, L. 1970. Locating the initial in the vascular cambium of Pinus strobus by electron microscopy. Wood Sci. Technol. 4: 1–17.

    Google Scholar 

  • Murmanis, L. 1971. Structural changes in the vascular cambium of Pinus stribus L. during an annual cycle. Ann. Bot. 35: 133–141.

    Google Scholar 

  • Newcombe, F. C. 1895. The regulatory formation of mechanical tissue. Bot. Gaz. 20: 441–448.

    Google Scholar 

  • Newman, I. V. 1956. Pattern in meristems of vascular plants. I. Cell partition in living apices and in the cambial zone in relation to the concepts of initial cells and apical cells. Phytomorphology 6: 1–19.

    Google Scholar 

  • Oliver, C. D. 1978. The development of northern red oak in mixed stands in central New England.

    Google Scholar 

  • Yale Univ. School For. Environm. Studies, Bull. No. 91. New Haven, Connecticut. Oliver, C. D. 1980. Even-aged development of mixed-species stands. J. Forestry 78: 201–203.

    Google Scholar 

  • Olszewska, M. J., B. Gabara and F. Steplewski. 1966. Recherches cytochimiques sur la succession d’enzymes hydrolytiques, sur la présence de la thiamine pyrophosphatase et des polysaccharides au cours du développement de la plague cellulaire. Protoplasma 61: 60–80.

    Article  PubMed  CAS  Google Scholar 

  • Owens, J. N. and M. Molder. 1973. A study of DNA and mitotic activity in the vegetative apex of Douglas fir during the annual growth cycle. Canad. J. Bot. 51: 1395–1409.

    Google Scholar 

  • Paliwal, G. S. and L. M. Srivastava. 1969. The cambium of Alseuosmia. Phytomorphology 19: 5–8. Parthasarathy, M. V. and T. C. Pesacreta. 1980. Microfilaments in plant vascular cells. Canad. J. Bot. 58: 807–815.

    Google Scholar 

  • Patel, K. R. and G. P. Berlyn. 1981a. Genetic instability of multiple buds of Pinus coulteri regenerated from tissue culture. In press.

    Google Scholar 

  • Patel, K. R. and G. P. Berlyn. 1981b. Influence of kinetin on histone composition and endogenous

    Google Scholar 

  • RNA level in differentiating metaxylem of Zea mays root tips. Unpublished manuscript. Priestly, J. H. 1930. Studies in the physiology of cambial activity. III. The seasonal activity of the cambium. New Phytol. 29: 316–354.

    Google Scholar 

  • Priestly, J. H. 1932. The growing tree. Forestry 6: 105–112.

    Google Scholar 

  • Rayle, D. and R. Cleland. 1977. Control of plant cell enlargement by hydrogen ions. Developmental Biology 11: 187–211.

    CAS  Google Scholar 

  • Reinders-Gouwentak, C. A. 1965. Physiology of the cambium and other secondary meristems of the shoot. In: W. Ruhland (ed.), Encyclopedia of Plant Physiology Vol. 15: 1076–1105. Springer, Berlin.

    Google Scholar 

  • Robards, A. W. and P. Kidway. 1969. A comparative study of the ultrastructure of resting and active cambium of Salix fragilis L. Planta 84: 239–249.

    Article  Google Scholar 

  • Roberts, L. W. 1969. The initiation of xylem differentiation. Bot. Rev. 35: 201–250.

    Google Scholar 

  • Roberts, L. W. 1976. Cytodifferentiation in plants. Cambridge Univ. Press, New York.

    Google Scholar 

  • Roland, J. C. 1978. Early differences between radial walls and tangential walls of actively growing cambial zone. IAWA Bull. 1978 /1: 7–10.

    Google Scholar 

  • Sanio, K. 1873. Anatomie der gemeinen Kiefer (Pinus sylvestris L.). Jahrb. Wiss. Bot. 9: 50–126.

    Google Scholar 

  • Sheldrake, A. R. 1971. Auxin in the cambium and its differentiating derivatives. J. Exp. Bot. 22: 735–740.

    Google Scholar 

  • Sheldrake, A. R. 1973. The production of hormones in higher plants. Biol. Rev. 48: 509–559.

    Google Scholar 

  • Sinnott, E. W. 1960. Plant morphogenesis. McGraw-Hill, New York.

    Google Scholar 

  • Skene, D. S. 1972. The kinetics of tracheid development in Tsuga canadensis Corr. and its relation to tree vigour. Ann. Bot. 36: 179–187.

    Google Scholar 

  • Soding, H. 1961. Vorkommen und Verteilung der Auxine der Pflanze. In: W. Ruhland (ed.), Encyclopedia of Plant Physiology: 583–699. Springer, Berlin.

    Google Scholar 

  • Srivastava, L. M. 1966. On the fine structure of Fraxinus americana. L. J. Cell Biol. 31: 79–93. Srivastava, L. M. and T. P. O’Brien. 1966. On the ultrastructure of cambium and its vascular derivatives. I. Cambium of Pinus strobus. Protoplasma 61: 257–276.

    Google Scholar 

  • Stevenson, T. T. and R. Cleland. 1981. Osmoregulation in the Avena coleoptile in relation to auxin and growth. Plant Physiol. 67: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, C. M. 1957. Status of cambial chemistry. TAPPI 40: 244–256.

    CAS  Google Scholar 

  • Stewart, C. M. 1966. The chemistry of secondary growth in trees. Div. For. Prod. Techn. Paper No. 43. CSIRO, Melbourne.

    Google Scholar 

  • Terry, M. E. and R. L. Jones. 1981. Effect of salt on auxin-included acidification and growth by pea internode sections. Plant Physiol. 68: 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. and C. W. Ross, C. J. Chastain, N. Koomanoff, J. Hendrix and E. Van Volkenburgh. 1981. Cytokinin-induced wall extensibility in excised cotyledons of radish and cucumber. Plant Physiol. 68: 107–110.

    CAS  Google Scholar 

  • Time11, T. E. 1973. Ultrastructure of the dormant and active cambial zones and the dormant phloem associated with formation of normal and compression woods in Picea abies (L.) Karst. SUNY Coll. Environm. Sci. For. Techn. Publ. No. 96. Syracuse, New York.

    Google Scholar 

  • Time11, T. 1979. Formation of compression wood in balsam fir (Abies balsamea). I. Ultrastructure of the active cambial zone and its enlarging derivatives. Holzforschung 33: 137–143.

    Google Scholar 

  • Timell, T. E. 1980a. Organization and ultrastructure of the dormant cambial zone in compression wood of Picea abies. Wood Sci. Technol. 14: 161–179.

    Google Scholar 

  • Timell, T. E. 1980b. Karl Gustav Sanio and the first scientific description of compression wood. IAWA Bull. n. s. 1: 147–153.

    Google Scholar 

  • Titman, P. W. and R. H. Wetmore. 1955. The growth of long and short shoots of Cercidiphyllum. Amer. J. Bot. 42: 364–372.

    Google Scholar 

  • Tomlinson, P. B. and K. A. Longman. 1981. Growth phenology of tropical trees in relation to cambial activity. In: F. H. Bormann and G. P. Berlyn (eds.), Age and Growth Rate of Tropical Trees: 7–19. Yale Univ. School For. Environm. Studies, Bull. No. 94. New Haven, Connecticut.

    Google Scholar 

  • Tsuda, M. 1975. The ultrastructure of the vascular cambium and its derivatives in coniferous species. I. Cambial cells. Bull. Tokyo Univ. For. 67: 158–226.

    Google Scholar 

  • Wardrop, A. B. 1952. Formation of new cell walls in cell division. Nature 170: 329.

    Article  PubMed  CAS  Google Scholar 

  • Wardrop, A. B. 1957. The phase of lignification in the differentiation of wood fibres. TAPPI 40: 225–243.

    CAS  Google Scholar 

  • Wardrop, A. B. 1964. The reaction anatomy of arborescent angiosperms. In: M. H. Zimmermann (ed.), The Formation of Wood in Forest Trees: 405–456. Acad. Press, New York.

    Google Scholar 

  • Wareing, P. F. 1951. Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Plant 4: 546–562.

    Google Scholar 

  • Wareing, P. F. 1958. The physiology of cambial activity. J. Inst. Wood Sci. 1: 34–42.

    Google Scholar 

  • Westing, A. H. 1965. The formation and function of compression wood in gymnosperms. I. Bot. Rev. 31: 381–480.

    Google Scholar 

  • Westing, A. H. 1968. The formation and function of compression wood in gymnosperms. II. Bot. Rev. 34: 51–105.

    Google Scholar 

  • Whalley, B. E. 1950. Increase in girth of the cambium in Thuja occidentalis L. Canad. J. Res. C 28: 331–340.

    Google Scholar 

  • Wilcox, H. 1962. Cambial growth characteristic. In: T. T. Kozlowski (ed.), Tree Growth: 57–88. Ronald Press, New York.

    Google Scholar 

  • Wilson, B. F. 1963. Increase in cell wall surface area during enlargement of cambial derivatives in Abies concolor. Amer. J. Bot. 50: 95–102.

    Google Scholar 

  • Wilson, B. F. 1964. A model for cell production by the cambium of conifers. In: M. H. Zimmermann (ed.), The Formation of Wood in Forest Trees: 19–36. Acad. Press, New York. Wilson, B. F. 1970. The growing tree. Univ. Massachusetts Press, Amherst.

    Google Scholar 

  • Wilson, B. F. and R. R. Archer. 1977. Reaction wood: Induction and mechanical action. Ann. Rev. Plant Physiol 28: 23–43.

    Google Scholar 

  • Wilson, B. F. and R. A. Howard. 1968. A computer model for cambial activity. For. Sci. 14: 77–90.

    Google Scholar 

  • Wodzicki, T. J. and C. L. Brown. 1973. Organization and breakdown of the protoplast during maturation of pine tracheids. Amer. J. Bot. 60: 631–640.

    Google Scholar 

  • Wodzicki, T. J. and W. J. Humphreys. 1972. Cytodifferentiation of maturing pine tracheids. Tissue and Cell 4: 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Wodzicki, T. J., A. B. Wodzicki and S. Zajaczkowski. 1979. Hormone modulation of the oscillatory system involved in polar transport of auxin. Physiol. Plant 46: 97–100.

    Google Scholar 

  • Worrall, J. F. 1980. The impact of environment on cambial growth. In: C. H. A. Little (ed.), Control of Shoot Growth in Trees: 127–142. IUFRO Workshop Proc. Marit. For. Res. Center, Fredericton, New Brunswick, Canada.

    Google Scholar 

  • Wort, D. J. 1962. Physiology of cambial activity. In: T. T. Kozlowski (ed.), Tree Growth: 89–95. Ronald Press, New York.

    Google Scholar 

  • Zajaczkowski, S. and T. J. Wodzicki. 1978. Auxin and plant morphogenesis - a model of regulation. Acta Soc. Bot. Pol. 47: 233–243.

    Google Scholar 

  • Zimmermann, M. H. (ed.). 1964. The formation of wood in forest trees. Acad. Press, New York.

    Google Scholar 

  • Zimmermann, M. H. and C. L. Brown. 1971. Trees: structure and function. Springer, New York.

    Google Scholar 

  • Zimmermann, M. H. and P. B. Tomlinson. 1966. Analysis of complex vascular systems in plants: Optical shuttle method. Science 15: 72–73.

    Google Scholar 

  • Zimmermann, M. H. and P. B. Tomlinson. 1967. A method for the analysis of the course of vessels in wood. IAWA Bull. 1967 /1: 2–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Berlyn, G.P. (1982). Morphogenetic factors in wood formation and differentiation. In: Baas, P. (eds) New Perspectives in Wood Anatomy. Forestry Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2418-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2418-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8269-5

  • Online ISBN: 978-94-017-2418-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics