Skip to main content

Cell wall hydrolysis in the tracheary elements of the secondary xylem

  • Chapter
New Perspectives in Wood Anatomy

Part of the book series: Forestry Sciences ((FOSC,volume 1))

Summary

Tracheid and vessel element pit membranes and vessel perforation plate partitions are reduced by hydrolysis to a cellulose residue during cell differentiation. This process removes the non-cellulosic matrix components from unlignified walls leaving a cellulose microfibrillar web or net. Where these webs traverse small openings as in tracheid and vessel element pit membranes, they usually survive intact. Where they traverse larger openings as in vessel element perforations, they generally disappear. Whether this is due to the greater forces of the transpiration stream across such openings or the activity of cellulase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamber, R.K. 1961. Staining reaction of the pit membrane in wood cells. Nature 191: 409–410. Benayoun, J., A.M. Catesson Y. Czaninski. 1981. A cytochemical study of differentiation and breakdown of vessel end walls. Ann. Bot. 47: 687–698.

    Google Scholar 

  • Bolton, A.J. J.A. Petty. 1977. Variation in susceptibility to aspiration of bordered pits in conifer wood. J. Exp. Bot. 28: 935–941.

    Google Scholar 

  • Bonner, L.D. 1970. Ultrastructure and polymer composition of intercellular passageways in yellow poplar. PhD Diss., North Carolina State Univ., N.C.

    Google Scholar 

  • Butterfield, B.G. B.A. Meylan. 1972. Scalariform perforation plate development in Laurelia novae-zelandiae A. Cunn.: A scanning electron microscope study. Austr. J. Bot. 20: 253–259.

    Google Scholar 

  • Butterfield, B.G. B.A. Meylan. 1980. Three dimensional structure of wood: An ultrastructural approach. 2nd Ed. Chapman Hall, London.

    Book  Google Scholar 

  • Buvat, R. 1964. Observations infrastructurales sur les parois transversales des elements de vaisseaux (métaxylème de Cucurbita pepo) avant leur perforation. Compt.-rend. hebd. séanc. Ac. Sci. Paris sér. D, 258: 6210–6212.

    Google Scholar 

  • Carlquist, S. 1975. Ecological strategies of xylem evolution. Univ. Calif. Press, Berkeley. Chafe, S.C. G. Chauret. 1974. Cell wall structure in the xylem of Trembling Aspen. Protoplasma 80: 129–147.

    Google Scholar 

  • Chattaway, M.M. 1949. The development of tyloses and secretion of gum in heartwood formation. Austr. J. Sci. Res. B 2: 227–241.

    Google Scholar 

  • Czaninski, Y. 1977. Vessel-associated cells. IAWA Bull. 1977 /3: 51–52.

    Google Scholar 

  • Czaninski, Y. 1979. Cytochémie ultrastructurale des parois du xylème sécondaire. Biol. Cellul. 35: 97–102.

    Google Scholar 

  • Esau, K. I. Charvat. 1978. On vessel member differentiation in the bean (Phaseolus vulgaris L.). Ann. Bot. 42: 665–677.

    Google Scholar 

  • Esau, K. W.M.B. Hewitt. 1940. Structure of end wall in differentiating vessels. Hilgardia 13: 229–244.

    Google Scholar 

  • Fengel, D. 1972. Structure and function of the membrane in softwood bordered pits. Holzforschung 26: 1–9.

    Article  Google Scholar 

  • Foster, R.C. 1967. Fine structure of tyloses in three species of Myrtaceae. Austr. J. Bot. 15: 2534.

    Google Scholar 

  • Fuji, T., H. Harada H. Saiki. 1979. The layered structure of ray parenchyma secondary wall in the wood of 49 Japanese angiosperm species. Mokuzai Gakkaishi 25: 251–257.

    Google Scholar 

  • Fuji, T., H. Harada H. Saiki. 1980. The layered structure of secondary walls in axial parenchyma of the wood of 51 Japanese angiosperm species. Mokuzai Gakkaishi 26: 373–380.

    Google Scholar 

  • Fuji, T., H. Harada H. Saiki. 1981. Ultrastructure of the `amorphous layer’ in xylem parenchyma cell wall of angiosperm species. Mokuzai Gakkaishi 27: 149–156.

    Google Scholar 

  • Gregory, S.C. J.A. Petty. 1973. Valve actions of bordered pits in conifers. J. Exp. Bot. 24: 763–767.

    Google Scholar 

  • Harada, H. W.A. Côté. 1967. Cell wall organization in the pit border region of softwood tracheids. Holzforschung 21: 81–85.

    Article  Google Scholar 

  • Ishida, S. 1970. Observation of wood structure by SEM. Wood Industry 21: 560–564. Kuster, E. 1956. Die Pflanzenzelle. G. Fischer, Jena.

    Google Scholar 

  • Liese, W. 1965. The fine structure of bordered pits in softwoods. In: W.A. Côté (ed.), Cellular Ultrastructure of Woody Plants: 271–290. Syracuse Univ. Press, New York.

    Google Scholar 

  • Meyer, R.W. 1967. Tyloses: development in white oak. For. Prod. J. 17: 50–56.

    Google Scholar 

  • Meyer, R.W. W.A. Côté. 1968. Formation of the protective layer and its role in tylosis development. Wood Sci. Technol. 2: 84–94.

    Google Scholar 

  • Meyer, R.W. A.F. Muhammad. 1971. Scalariform perforation plate fine structure. Wood and Fiber 3: 139–145.

    Google Scholar 

  • Meylan, B.A. B.G. Butterfield. 1972a. Perforation plate differentiation in Knightia excelsa R. Br. A scanning electron microscope study. Austr. J. Bot. 20: 79–86.

    Google Scholar 

  • Meylan, B.A. B.G. Butterfield. 1972b. Scalariform perforation plates: Observations using scanning electron microscopy. Wood and Fiber 4: 225–233.

    Google Scholar 

  • Meylan, B.A. B.G. Butterfield. 1981a. Perforation plate development in the vessels of hardwoods. In: J.R. Barnett (ed.), Xylem Cell Development: 96–114. Castle House Publ., Tunbridge Wells.

    Google Scholar 

  • Meylan, B.A. B.G. Butterfield. 1981b. Pit membrane structure in the vessel-less wood of Pseudowintera. Abstr. 13th Intern. Bot. Congr. 37.

    Google Scholar 

  • Murmanis, L. 1975. Formation of tyloses in felled Quercus rubra L. Wood Sci. Technol. 9: 3–14. Murmanis, L. 1976. The protective layer in xylem parenchyma cells of Quercus rubra L. Appl. Polymer Symp. 28: 1283–1292.

    Google Scholar 

  • Murmanis, L. 1978. Breakdown of end walls in differentiating vessels of secondary xylem in Quercus rubra L. Ann. Bot. 42: 679–682.

    Google Scholar 

  • Niedermeyer, W. 1974. Auflösung der Endwände in differenzierenden Gefässzellen. Ber. Deutsch. Bot. Ges. 86: 529–536.

    Google Scholar 

  • O’Brien, T.P. 1970. Further observations on hydrolysis of the cell wall in the xylem. Protoplasma 69: 1–14.

    Article  Google Scholar 

  • O’Brien, T.P. 1974. Primary vascular tissues, In: A.W. Robards (ed.), Dynamic Aspects of Plant Ultrastructure: 414–440. McGraw Hill, New York.

    Google Scholar 

  • O’Brien, T.P. 1981. The primary xylem. In: J.R. Barnett (ed.), Xylem Cell Development: 3–37. Castle House Publ., Tunbridge Wells.

    Google Scholar 

  • O’Brien, T.P. K.V. Thimann. 1967. Observations on the fine structure of the oat coleoptile. III. Correlated light and electron microscopy of the vascular tissues. Protoplasma 63: 443–478.

    Google Scholar 

  • Ohtani, J. S. Ishida. 1976. An observation on perforation plate differentiation in Fagus crenata Bl. using scanning electron microscopy. Res. Bull. Coll. Exp. For. Hokkaido Univ. 33: 115126.

    Google Scholar 

  • Ohtani, J. S. Ishida. 1978a. An observation on the perforation plates in Japanese dicotyledonous woods using scanning electron microscopy. Res. Bull. Coll. Exp. For. Hokkaido Univ. 35: 65–116.

    Google Scholar 

  • Ohtani, J. S. Ishida. 1978b. Pit membrane with torus in dicotyledonous woods. Mokuzai Gakkaishi 24: 673–675.

    Google Scholar 

  • Parham, R.A. 1973. On the substructure of scalariform perforation plates. Wood and Fiber 4: 342–346.

    Google Scholar 

  • Petty, J.A. 1971. The aspiration of bordered pits in conifer wood. Proc. Roy. Soc. London B 181: 395–406.

    Google Scholar 

  • Pickett-Heaps, J.D. 1967. The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall deposition and distribution of cytoplasmic microtubules. Developmental Biology 15: 206–236.

    Article  CAS  Google Scholar 

  • Sassen, M.A.A. 1965. Breakdown of the plant cell wall during the cell-fusion process. Acta Bot. Neerl. 14: 165–196.

    Google Scholar 

  • Schmid, R. 1965. The fine structure of pits in hardwoods. In: W.A. Côté (ed.), Cellular Ultra-structure of Woody Plants: 291–304. Syracuse Univ. Press, New York.

    Google Scholar 

  • Schmid, R. R.D. Machado. 1968. Pit membranes in hardwoods–fine structure and development. Protoplasma 66: 185–204.

    Article  Google Scholar 

  • Sheldrake, A.R. 1970. Cellulase and cell differentiation in Acer pseudoplatanus. Planta 95: 167178.

    Google Scholar 

  • Siau, J.F. 1971. Flow in wood. Syracuse Univ. Press, New York.

    Google Scholar 

  • Thomas, R.J. 1967. The development and ultrastructure of the pits of two southern yellow pine species. Thesis. Duke Univ., Durham, North Carolina.

    Google Scholar 

  • Thomas, R.J. L.D. Bonner. 1974. The ultrastructure of intercellular passageways in vessels of yellow poplar (Liriodendron tulipifera L.). II. Scalariform perforation plates. Wood Sci. 6: 193–199.

    Google Scholar 

  • Thomas, R.J. K.P. Kringstad. 1971. The role of hydrogen bonding in pit aspiration. Holzforschung 25: 143–149.

    Article  CAS  Google Scholar 

  • Yata, S., T. Itoh T. Kishima. 1970. Formation of perforation plates and bordered pits in differentiating vessel elements. Wood Research 50: 1-il.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Butterfield, B.G., Meylan, B.A. (1982). Cell wall hydrolysis in the tracheary elements of the secondary xylem. In: Baas, P. (eds) New Perspectives in Wood Anatomy. Forestry Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2418-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2418-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8269-5

  • Online ISBN: 978-94-017-2418-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics