Skip to main content

Nitrogenases: Distribution, Composition, Structure and Function

  • Chapter
New Horizons in Nitrogen Fixation

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 17))

Abstract

Nitrogenase, the biological catalyst that reduces atmospheric N2 to ammonia, is present in widely diverse eubacteria and archaebacteria, but not in eukaryotes. The biological nitrogen-fixation process provides about 60% of the total production of fixed nitrogen from all natural and industrial sources (1). Since 1930 (2), molybdenum was believed to have an absolutely essential role in nitrogen fixation, even though early on vanadium was demonstrated to be almost as stimulatory as Mo to the growth of bacteria on N2 (3). Over the subsequent years, first through the development of the biochemistry and then later the genetics of nitrogen fixation, the essential nature of Mo solidified. The isolation of the larger component protein of nitrogenase, the MoFe protein (or component 1) (4), with its FeMo-cofactor (5), and the discovery of nitrogen-fixation specific (nif) genes involved in Mo-specific functions, which were often found to be linked to and co-regulated with the nitrogenase structural genes, supported the supposed absolute requirement for Mo. It is clear now, however, that Mo is not essential for biological nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newton WE (1981) Kirk-Othmer: Encyclopedia of Chemical Technology, 3rd edit., Vol. 15, pp 942–968, John Wiley, New York.

    Google Scholar 

  2. Bortels H (1930) Arch. Mikrobiol. 1, 333–342.

    Article  CAS  Google Scholar 

  3. Bortels H (1933) Zentr. Bakt. Parasitenk. Abt. II 87, 476–477.

    Google Scholar 

  4. Bulen WA and LeComte JR (1966) Proc. Natl. Acad. Sci. USA 56, 979986.

    Google Scholar 

  5. Shah VK and Brill WJ (1977) Proc. Natl. Acad. Sci. USA 74, 3249–3253.

    Article  CAS  Google Scholar 

  6. Bishop et al (1980) Proc. Natl. Acad. Sci. USA 77, 7342–7346.

    Article  CAS  Google Scholar 

  7. Bishop PE et al (1986a) Science 232, 92–94.

    Article  PubMed  CAS  Google Scholar 

  8. Bishop PE et al (1986b) Biochem. J. 238, 437–442.

    PubMed  CAS  Google Scholar 

  9. Robson RL et al (1986) Nature 322, 388–390.

    Article  CAS  Google Scholar 

  10. Robson RL et al (1989) EMBO J. 8, 1217–1224.

    PubMed  CAS  Google Scholar 

  11. Pau RN et al (1989a) J. Bacteriol. 171, 124–129.

    PubMed  CAS  Google Scholar 

  12. Luque F and Pau RN (1991) Mol. Gen. Genet. 227, 481–487.

    Article  PubMed  CAS  Google Scholar 

  13. Arnold W et al (1988) J. Mol. Biol. 203, 715–738.

    Article  PubMed  CAS  Google Scholar 

  14. Jacobson MR et al (1989a) J. Bacteriol. 171: 1017–1027.

    PubMed  CAS  Google Scholar 

  15. Joerger RD and Bishop PE (1988) J. Bacteriol. 170, 1475–1487.

    PubMed  CAS  Google Scholar 

  16. Joerger RD et al (1990) J. Bacteriol. 172, 3400–3408.

    PubMed  CAS  Google Scholar 

  17. Joerger RD et al (1989a) J. Bacteriol. 171, 1075–1086.

    PubMed  CAS  Google Scholar 

  18. Joerger RD et al (1989b) J. Bacteriol. 171, 3258–3268.

    PubMed  CAS  Google Scholar 

  19. Wolfinger ED and Bishop PE (1991) J. Bacteriol. 173, 7565–7572.

    PubMed  CAS  Google Scholar 

  20. Brigle KE et al (1987) J. Bacteriol. 169, 1547–1553.

    PubMed  CAS  Google Scholar 

  21. Kennedy C and Dean DR (1992) Mol. Gen. Genet. 231, 494–498.

    Article  PubMed  CAS  Google Scholar 

  22. Chen JS et al (1990) In P.M. Gresshoff PM, Roth LE, Stacey G and Newton WE, eds, Nitrogen Fixation: Achievements and Objectives, pp 483–490, Chapman and Hall, New York.

    Google Scholar 

  23. Dilworth MJ et al (1987) Nature 327, 167–168.

    Article  CAS  Google Scholar 

  24. Hoover TR et al (1987) Nature 329, 855–857.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson MR et al (1989b) Mol. Gen. Genet. 219, 49–57.

    Article  PubMed  CAS  Google Scholar 

  26. Walmsley J et al (1990) In Gresshoff PM, Roth LE, Stacey G and Newton WE, eds, Nitrogen Fixation: Achievements and Objectives, p 599, Chapman and Hall, New York.

    Google Scholar 

  27. Dean DR and Jacobson MR (1992) In Stacey G, Burris RH and Evans HJ, eds, Biological Nitrogen Fixation, pp 763–834, Chapman and Hall, New York.

    Google Scholar 

  28. Schneider K et al (1991) Eur. J. Biochem. 195, 653–661.

    Article  PubMed  CAS  Google Scholar 

  29. Kentemich T et al (1988) FEMS Microbiol. Lett. 51, 19–24.

    Article  CAS  Google Scholar 

  30. Scherer P (1989) Arch. Microbiol. 151, 44–48.

    Article  CAS  Google Scholar 

  31. Fallik E et al (1991) J. Bacteriol. 173, 365–371.

    PubMed  CAS  Google Scholar 

  32. Emerich DW and Burris RH (1976) J. Bacteriol. 134, 936–943.

    Google Scholar 

  33. Hales BJ et al (1986a) Biochemistry 25, 7251–7255.

    Article  PubMed  CAS  Google Scholar 

  34. Eady RR et al (1987) Biochem. J. 244, 197–207.

    PubMed  CAS  Google Scholar 

  35. Eady RR et al (1988) Biochem. J. 256, 189–196.

    PubMed  CAS  Google Scholar 

  36. Chisnell JR et al (1988) J. Bacteriol. 170, 27–33.

    PubMed  CAS  Google Scholar 

  37. Lehman LJ and Roberts GP (1991) J. Bacteriol. 173, 5705–5711.

    PubMed  CAS  Google Scholar 

  38. Hales BJ et al (1986b) J. Biol. Chem. 261, 15301–15306.

    PubMed  CAS  Google Scholar 

  39. Howard JB et al (1989) J. Biol. Chem. 264, 11270–11274.

    PubMed  CAS  Google Scholar 

  40. Georgiadis MM et al (1992) Science 257, 1653–1659.

    Article  PubMed  CAS  Google Scholar 

  41. Lowery RG et al (1989) Biochemistry 28, 1206–1212.

    Article  PubMed  CAS  Google Scholar 

  42. Willig A and Howard JB (1990) J. Biol. Chem. 265, 6596–6599.

    Google Scholar 

  43. Bergstrom J et al (1988) Biochem. J. 251, 165–169.

    PubMed  CAS  Google Scholar 

  44. Stephens PJ et al (1979) Proc. Natl. Acad. Sci. USA 76, 2585–2589.

    Article  CAS  Google Scholar 

  45. Filler WA et al (1986) Eur. J. Biochem. 160, 371–377.

    Article  PubMed  CAS  Google Scholar 

  46. Robinson AC et al (1986) J. Bacteriol. 166, 180–186.

    PubMed  CAS  Google Scholar 

  47. Paustian et al (1990) Biochemistry 29, 3515–3522.

    Article  PubMed  CAS  Google Scholar 

  48. Robinson AC et al (1989) J. Biol. Chem. 264, 10088–10095.

    PubMed  CAS  Google Scholar 

  49. Seefeldt LC et al (1992) J. Biol. Chem. 267, 6680–6688.

    PubMed  CAS  Google Scholar 

  50. Gavini N and Burgess BK (1992) J. Biol. Chem. 267, 21179–21186.

    PubMed  CAS  Google Scholar 

  51. Miller RW and Eady RR (1989) Biochem. J. 263, 725–729.

    PubMed  CAS  Google Scholar 

  52. Burgess BK et al (1980a) Biochim. Biophys. Acta 614, 196–209.

    Article  CAS  Google Scholar 

  53. Dilworth MJ and Eady RR (1991) Biochem. J. 277, 465–468.

    PubMed  CAS  Google Scholar 

  54. Dilworth MJ et al (1988) Biochem. J. 249, 745–751.

    PubMed  CAS  Google Scholar 

  55. Kim J and Rees DC (1992) Science 257, 1677–1682.

    Article  PubMed  CAS  Google Scholar 

  56. Dean DR et al (1990) Mol. Microbiol. 4, 1505–1512.

    Article  PubMed  CAS  Google Scholar 

  57. Brigle KE et al (1985) Gene 37, 37–44.

    Article  PubMed  CAS  Google Scholar 

  58. Scott DJ et al (1990) Nature 343, 188–190.

    Article  PubMed  CAS  Google Scholar 

  59. Scott DJ et al (1992) J. Biol. Chem. 267, 20002–20010

    PubMed  CAS  Google Scholar 

  60. May HD et al (1991) Biochem. J. 277, 457–464.

    Google Scholar 

  61. Kent HM et al (1990) Mol. Microbiol. 4, 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  62. Thomann H et al (1991) Proc. Natl. Acad. Sci. USA 88, 6620–6623.

    Article  CAS  Google Scholar 

  63. Pau RN (1989b) TIBS 14, 183–186.

    PubMed  CAS  Google Scholar 

  64. Smith BE et al (1988) Biochem. J. 250, 299–302.

    PubMed  CAS  Google Scholar 

  65. Bolin JT et al (1990) In Gresshoff PM, Roth LE, Stacey G and Newton WE, eds, Nitrogen Fixation: Achievements and Objectives, pp 117–124, Chapman and Hall, New York.

    Book  Google Scholar 

  66. Zimmermann R et al (1978) Biochim. Biophys. Acta 537, 185–207.

    Article  CAS  Google Scholar 

  67. Stephens PJ (1985) In Spiro TG, ed, Molybdenum Enzymes, pp 117–160, Wiley-Interscience, New York.

    Google Scholar 

  68. Johnson MK et al (1981) Biochim. Biophys. Acta 671, 61–70.

    Article  CAS  Google Scholar 

  69. Hagen WR et al (1987) Eur. J. Biochem. 169, 457–465.

    Article  PubMed  CAS  Google Scholar 

  70. Lindahl PA et al (1988) J. Biol. Chem. 263, 19412–19418.

    PubMed  CAS  Google Scholar 

  71. Surerus KK et al (1992) J. Amer. Chem. Soc. 114, 8579–8590.

    Article  CAS  Google Scholar 

  72. Morningstar JE et al (1987) Biochemistry 26, 1795–1800.

    Article  PubMed  CAS  Google Scholar 

  73. Burgess BK et al (1980b) J. Biol. Chem. 255, 353–356.

    PubMed  CAS  Google Scholar 

  74. Newton WE et al (1985) In Evans HJ, Bottomley PJ and Newton WE, eds, Nitrogen Fixation Research Progress, pp 605–610, Martinus Nijhoff, Dordrecht.

    Book  Google Scholar 

  75. Conradson SD et al (1987) J. Amer. Chem. Soc. 109, 7507–7515.

    Article  CAS  Google Scholar 

  76. Arber JM et al (1988) Biochem. J. 252, 421–425.

    PubMed  CAS  Google Scholar 

  77. Newton WE (1992) In Stacey G, Burris RH and Evans HJ, eds, Biological Nitrogen Fixation, pp 877–929, Chapman and Hall, New York.

    Google Scholar 

  78. Newton WE et al (1989) Biochem. Biophys. Res. Commun. 162, 882–891.

    Article  CAS  Google Scholar 

  79. Newton WE et al (1990) In Gressoff PM, Roth LE, Stacey G and Newton WE, eds, Nitrogen Fixation: Achievements and Objectives, p 165, Chapman and Hall, New York.

    Google Scholar 

  80. Arber JM et al (1989) Biochem. J. 258, 733–737.

    PubMed  CAS  Google Scholar 

  81. Müller A et al (1992) FEBS Lett. 303, 36–40.

    Article  PubMed  Google Scholar 

  82. Wolle D et al (1991) J. Biol. Chem. 267, 3667–3673.

    Google Scholar 

  83. Hageman RV and Burris RH (1978) Biochemistry 17, 4117–4124.

    Article  PubMed  CAS  Google Scholar 

  84. Thorneley RNF and Lowe DJ (1984) Biochem. J. 224, 887–901.

    PubMed  CAS  Google Scholar 

  85. Wolle D et al (1992) Science 258, 992–995.

    Article  PubMed  CAS  Google Scholar 

  86. Thorneley RNF et al (1989) Biochem. J. 264, 657–661.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newton, W.E. (1993). Nitrogenases: Distribution, Composition, Structure and Function. In: Palacios, R., Mora, J., Newton, W.E. (eds) New Horizons in Nitrogen Fixation. Current Plant Science and Biotechnology in Agriculture, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2416-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2416-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4255-2

  • Online ISBN: 978-94-017-2416-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics