Skip to main content

The Neural Control of Object-Oriented Actions

  • Chapter
Neural Bases of Motor Behaviour

Part of the book series: NATO ASI Series ((ASID,volume 85))

  • 110 Accesses

Abstract

A large part of human actions are directed toward objects. Fundamental aspects of our behavior, like the ability to use tools, for example, originate from neural specialization for perceiving, grasping, recognizing and categorizing objects. These operations correspond to adaptive acquisitions in primates and some are unique to man. In this chapter, an ensemble of mechanisms for behaving with objects will be described, with emphasis on the anatomical and physiological arguments that allow to delineate a specific neural system devoted to object-oriented movements.

Note: This Chapter is an abbriged version of a Chapter to appear in: M. Jeannerod, “Representations for action. Neural coding and cognitive structure”. Oxford, Blackwell (In press).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, R.A., Essik, G.K., and Siegel, R.M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230, 456–458.

    Article  PubMed  CAS  Google Scholar 

  • Arbib, M.A. (1985) Schemas for the temporal organization of behavior. Human Neurobiology 4, 63–72.

    PubMed  CAS  Google Scholar 

  • Arbib, M.A. (1981) Perceptual structures and distributed motor control, in V.B. Brooks (ed.), Handbook of Physiology, Section I: The nervous system, Vol.2: Motor control,Williams et Wilkins, Baltimore, pp. 1449–1480

    Google Scholar 

  • Arbib, M.A and Hesse, M.B. The construction of reality. Cambridge University press, Cambridge.

    Google Scholar 

  • Baleydier, C. and Morel, A. (1992) Segregated thalamo-cortical pathways to infeior parietal and inferotemporal cortex in macaque monkey. Visual Neuroscience 8, 391–405.

    Article  PubMed  CAS  Google Scholar 

  • Boussaoud, D. (1995) Primate premotor cortex. Modulation of preparatory neural activity by gaze angle. Journal of Neurophysiology 73, 886–890.

    PubMed  CAS  Google Scholar 

  • Bullier, J., Girard, P., and Salin, P.A. (1994) The role of area 17 in the transfer of information to extrastriate visual cortex. Cerebral cortex 10, 301–330.

    Google Scholar 

  • Buys, E.J., Lemon, R.N., Mantel, G.W.H., and Muir, R.B. (1986) Selective facilitation of different hand muscles by single corticospinal neurons in the conscious monkey. Journal of Physiology 381, 529–549.

    PubMed  CAS  Google Scholar 

  • Cajal, S.R. (1909) Histologie du système nerveux de l’homme et des vertébrés, Maloine, Paris.

    Google Scholar 

  • Caminiti, R., Johnson, P.B., and Urbano, A. (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. The Journal of Neuroscience 10, 2039–2058.

    PubMed  CAS  Google Scholar 

  • Caminiti, R., Johnson, P.B., Burnod, Y., Galli, C., and Ferraina, S. (1990) Shift of preferred directions of premotor cortical cells with arm movements performed across the workspace. Experimental Brain Research 83, 228–232.

    Article  CAS  Google Scholar 

  • Casagrande, V.A., Harting, J.K., Hall, W.C., Diamond, I.T., and Martin, G.F. (1972) Superior colliculus of the Tree Shrew: a structural and functional subdivision into superficial and deep layers. Science 177, 444–447.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.F., Hyland, B., Maier, V, Palmeri, A., and Wiesendanger, M. (1991) Comparison of neural activity in the supplementary motoor area and in the primary motor cortex in the monkey. Somatosensory and Motor Research 8, 27–44.

    Article  PubMed  CAS  Google Scholar 

  • Crammond, D.J. and Kalaska, J.F. (1990) Cortical neuronal activity recorded in a delay task that dissociates location of cue stimulus and movement end-point. Society for Neuroscience Abstracts 16, 423.

    Google Scholar 

  • Dineen, J.J. and Hendrickson, A.E. (1981) Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys. Investigative Ophthalmology 00000 Visual Science 21, 749–752.

    CAS  Google Scholar 

  • Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992) Understanding motor events: A neurophysiological study. Experimental Brain Research 91, 176–180.

    Article  Google Scholar 

  • Faugier-Grimaud, S., Frenois, C., and Stein, D.G. (1978) Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16, 151–168.

    Article  PubMed  CAS  Google Scholar 

  • Faugier-Grimaud, S., Frenois, C., and Peronnet, F. (1985) Effects of posterior parietal lesions on visually guided movements in monkeys. Experimental Brain Research 59, 125–138.

    Article  CAS  Google Scholar 

  • Fogassi, L., Gallese, V., di Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., Matelli, M., Pedotti, A., and Rizzolatti, G. (1992) Space coding by premotor cortex. Experimental Brain Research 89, 686–690.

    Article  CAS  Google Scholar 

  • Gallese, V., Murata, A., Kaseda, M., Niki, N., and Sokoto, H. (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, C., Battaglini, P.P., and Fattori, P. (1993) Parietal neurons encoding spatial locations in craniotopic coordinates. Experimental Brain Research 96, 221–229.

    Article  CAS  Google Scholar 

  • Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., and Rizzolatti, G. (1988) Functional organization of inferior area 6 in the macaque monkey. 1. Somatotopy and the control of proximal movements. Experimental Brain Research 71, 475–490.

    Article  CAS  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R, and Massey, J.T. (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience 2, 1527–1537.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986) Neuronal population coding of movement direction. Science 233, 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P., and Bullier, J. (1991) Visual activity in areas V3A and V3 during reversible inactivation of area V1 in the macaque monkey. Journal of Neurophysiology 66, 1493–1503.

    PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P., and Bullier, J. (1992) Response selectivity in neurons in area MT of the macaque monkey during reversible inactivation of area V1. Journal of Neurophysiology 67, 1–10.

    Google Scholar 

  • Glendinning, D.S., Cooper, B.Y., Vierck, C.J., and Leonard CM (1992) Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions. Somatosensory and Motor Research 9, 61–73.

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA (1983) Neural mechanisms of visual orientation in rodents: targets versus places, in A. Hein and M. Jeannerod (eds)Spatially oriented behavior, Springer-Verlag, New-York, pp 35–62.

    Google Scholar 

  • Gordon, A.M., Forssberg, H., Johansson, R.S., and Westling, G. (1991) Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research 83, 477–482.

    CAS  Google Scholar 

  • Graziano, M.S.A., Yap, G.S., and Gross, C.G. (1994) Coding of visual space by premotor neurons. Science 266, 1054–1057.

    Article  PubMed  CAS  Google Scholar 

  • Hartje, W. and Ettlinger, G. (1973) Reaching in light and dark after unilateral posterior parietal ablations in the monkey. Cortex 9, 346–354.

    PubMed  CAS  Google Scholar 

  • Heffner, R. and Masterton, B. (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain, Behavior and Evolutionv 12, 161–200.

    Article  CAS  Google Scholar 

  • Hein, A. and Held, R. (1967) Dissociation of the visual placing response into elicited and guided components. Science 158, 190–192.

    Article  Google Scholar 

  • Hess, W.R., Bürgi, S., and Bucher, V. (1946) Motorische function des tectal and tegmentalgebietes. Monatsschrift für psychiatriche Neurologie 112, 1–52.

    Article  CAS  Google Scholar 

  • Humphrey, N.K. and Weiskrantz, L. (1967) Vision in monkeys after removal of the striate cortex. Nature 215, 595–597.

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen, J. and Poranen, A. (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97, 673–692.

    Article  PubMed  CAS  Google Scholar 

  • Iberall, T. and Arbib, M.A. (1990) Schemas for the control of hand movements: an assay on cortical localization, In: M.A. Goodale (ed),Vision and action. The control of grasping., Norwood, Ablex, pp. 204–242.

    Google Scholar 

  • Iberall, T., Bingham, G., and Arbib, M.A. (1986) Opposition space as a structuring concept for the analysis of skilled hand movements, in H. Heuer and C. Fromm (eds), Generation and modulation of action pattern, Experimental Brain Research Series 15: 158–173.

    Chapter  Google Scholar 

  • Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects, in J. Long and A. Baddeey (eds), Attention and Performance IX, Erlbaum, Hillsdale, pp. 153–168.

    Google Scholar 

  • Jeannerod, M. (1984) The timing of natural prehension movements. Journal of Motor Behaviour 16, 235–254.

    CAS  Google Scholar 

  • Jeannerod, M. (1986) The formation of finger grip during prehension. a cortically mediated visuomotor pattern. Behavioural Brain Research 19, 99–116.

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod, M. (1988) The neural and behavioural organization of goal-directed movements Oxford University Press, Oxford.

    Google Scholar 

  • Jeannerod M. (1994) The hand and the object. The role of posterior parietal cortex in forming motor representations. Canadian Journal of Physiology and Pharmacology 72, 525–534.

    Article  Google Scholar 

  • Jeannerod, M. and Biguer, B. (1982). Visuomotor mechanisms in reaching within extrapersonal space, in M.A. Goodale 00000 R. Mansfield (eds.), Advances in the analysis of visual behaviorr, MIT Press, D. Ingle, Boston, pp. 387–409

    Google Scholar 

  • Jeannerod, M. and Prablanc, C. (1983) The visual control of reaching movements, in: J. Desmedt (ed), Motor control mechanisms in man, Raven, New-York, pp 13–29.

    Google Scholar 

  • Jeannerod, M. and Rossetti, Y. (1993). Visuomotor coordination as a dissociable visual function: experimental and clinical evidences, in C. Kennard (ed.), Visual Perceptual Defects. Baillière’s Clinical Neurology, Vol.2 No.2, Baillière Tindall, pp. 439–460.

    Google Scholar 

  • Jeannerod, M., Arbib, M.A., Rizzolatti, G., and Sakata, H. (1995) Grasping objects. The cortical mechanisms of visuomotor transformation. Trends in Neuroscience 18, 314–320.

    Article  CAS  Google Scholar 

  • Johansson, R.S. and Westling, G. (1988) Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research 71, 59–71.

    CAS  Google Scholar 

  • Johansson, R.S. and Westling, G. (1987) Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research 66, 141–154.

    Article  CAS  Google Scholar 

  • Johnson, P.B., Ferraina, S., and Caminiti, R. (1993) Cortical networks for visual reaching. Experimental Brain Research 97, 361–365.

    Article  CAS  Google Scholar 

  • Kalaska, J.F., Caminiti, R., and Georgopoulos, A.P. (1983) Cortical mechanisms related to the direction of two dimensional arm movements. Relations in parietal area 5 and comparisonwithmotor cortex. Experimental Brain Research 51, 247–260.

    Article  CAS  Google Scholar 

  • Kato, M. and Tanji, J. (1972) Conscious control of motor units of human finger muscles, in: G.G. Samjen (ed), Neurophysiology studied in man, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Lamotte, R.H. and Acuna, C. (1978) Defects in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Research 139, 309–326.

    Article  PubMed  CAS  Google Scholar 

  • Lemon, R.N., Mantel, G.W.H., and Muir, R.B. (1986) Corticospinal facilitation of hand muscles during voluntary movements in the conscious monkey. Journal of Physiology 381, 497–527.

    PubMed  CAS  Google Scholar 

  • Lynch, J.C. (1980) The functional organization of posterior parietal association cortex. Behavioral Brain Science 3, 485–498.

    Article  Google Scholar 

  • MacKay, W.A. (1992). Properties of reach related neuronal activity in cortical area 7a. Journal of Neurophysiology 67, 1335–1345.

    PubMed  CAS  Google Scholar 

  • Marteniuk, R.G., Leavitt, J.L., MacKenzie, C.L., and Athenes, S. (1990). Functional relationships between grasp and transport components in a prehension task. Human Movement Science 9, 149–176.

    Article  Google Scholar 

  • Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, R. (1986) Afferent and efferent projections of the inferior area 6 in the Macaque Monkey. The Journal of Comparative Neurology 251, 281–298.

    Article  PubMed  CAS  Google Scholar 

  • Merigan, W.H. and Maunsell, S.H.R. (1993) How parallel are the primate visual pathways? Annual Reviews of Neuroscience 16, 369–402.

    Article  CAS  Google Scholar 

  • Mishkin, M. and Ungerleider, L.G. (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research 6, 57–77.

    Article  PubMed  CAS  Google Scholar 

  • Mohler, C.W. and Wurtz, R.H. (1977) Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. Journal of Neurophysiology 40, 74–94.

    PubMed  CAS  Google Scholar 

  • Morel, A. and Bullier, J. (1990) Anatomical segregation of two cortical visual pathways in the macaque monkey. Visual Neuroscience 4, 555–578.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V.B., Lynch, J.C., Georgopoulos, A. Sakata, H., and Acuna, C. (1975) Posterior parietal association cortex of the monkey: command functions for operations within extra-personal space. Journal of Neurophysiology 38, 871–908.

    CAS  Google Scholar 

  • Muir, R.B. and Lemon, R.N. (1983) Corticospinal neurons witha special role in precision grip. Brain Research 261, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Napier, J.R. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery 38B, 902–913.

    PubMed  Google Scholar 

  • Napier, J.R. (1961) Prehensility and opposability in the hands of primates. Symp. Zool. Soc. London 5, 115–132.

    Google Scholar 

  • Peele, T.L. (1944) Acute and chronic parietal lobe ablations in monkeys. Journal of Neurophysiology 7, 269–286.

    Google Scholar 

  • Perrett, D.I., Harris, M.H., Bevan, R., Thomas, S., Benson, P.J., Mistlin, A.J., Citty, A.J., Hietanen, J.K., and Ortega, J.E. (1989) Framework of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology 146, 87–113.

    PubMed  CAS  Google Scholar 

  • Phillips, C.G. (1985) Movements of the hand. Liverpool University Press, Liverpool.

    Google Scholar 

  • Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G. and Matelli, M. (1988) Functional organization of area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research 71, 491–507.

    Article  CAS  Google Scholar 

  • Robinson, D.L., Goldberg, M.E., and Stanton, G.B. (1978) Parietal association cortex in the primate. Sensory mechanisms and behavioural modulation. Journal of Neurophysiology 41, 910–932.

    PubMed  CAS  Google Scholar 

  • Sakata, H., Shibutani, H., Ito, Y., and Tsurugai, K. (1986) Parietal cortical neurons responding to rotary movement of visual stimulus in space. Experimental Brain Research 61, 658–663.

    Article  CAS  Google Scholar 

  • Sakata, H., Taira, M., Mine, S., and Murata, A. (1992) Hand-movement-related neurons of the posterior parietal cortex of the monkey: their role in the visual guidance of hand movements, in R. Caminiti, P. B. Johnson and Y. Burned, (Eds), Control of arm movement in space: neurophysiological and computational approaches, Heidelberg: Springer, Berlin, pp. 185–198.

    Chapter  Google Scholar 

  • Schieber, M.H. (1990) How might the motor cortex individuate movements, TINS 13, 440–445.

    PubMed  CAS  Google Scholar 

  • Schneider GE (1969) Two visual systems. Science 163, 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Shinoda, Y., Yokota, J.I., and Futami, T. (1981) Divergent projections of individual corticospinal axons to motoneurons of multiple muscles inn the monkey. Neuroscience Letters 23, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Sivak, B. and MacKenzie, C.L. (1992) The contribution of peripheral vision and central vision to prehension, In L. Proteau and D. Elliott (Eds)Vision and motor control,Elsevier, Amsterdam.

    Google Scholar 

  • Sprague, J.M. and Meikie, T.H. (1965) The role of the superior colliculus in visually guided behavior. Experimental Neurology 11, 115–146.

    Article  PubMed  CAS  Google Scholar 

  • Stelmach, G.E., Castiello, U., and Jeannerod, M. (1994) Orienting the finger opposition space during prehension movements. Journal of Motor Behavior 26, 178–186.

    Article  PubMed  CAS  Google Scholar 

  • Taira, M., Mine, S., Georgopoulos, A.P., Murata, A., and Sakata, H. (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movements. Experimental Brain Research 83, 29–36.

    Article  CAS  Google Scholar 

  • Ungerleider, L. and Mishkin, M. (1982) Two cortical visual systems, in: D.J. Ingle, M.A. Goodale and R.J.W. Mansfield (Eds),Analysis of visual behavior, MIT Press, Cambridge, pp. 549–586.

    Google Scholar 

  • Vital-Durand, F. and Jeannerod, M. (1974) Role of visual experience in the development of optokinetic responses in kittens. Experimental Brain Research 20, 297–302.

    Article  CAS  Google Scholar 

  • Vital-Durand, F., Putkonen, P.T.S., and Jeannerod M. (1974) Motion detection and optokinetic responses in dark reared kittens.Vision Research 14, 141–142.

    CAS  Google Scholar 

  • Wallace, S.A. and Weeks, D.L. (1988). Temporal constraints in the control of prehensive movements. Journal of Motor Behavior 20, 81–105.

    PubMed  CAS  Google Scholar 

  • Wannier, T.M.J., Maier, M.A., and Hepp-Reymond, M.C. (1991) Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip. Journal of Neurophysiology 65, 572–589.

    PubMed  CAS  Google Scholar 

  • Weiskrantz, L. (1986) Blindsight. A case study and implications, Oxford University Press, Oxford.

    Google Scholar 

  • Wessling, G. and Johansson, R.S. (1984) Factors influencing the force control during precisiongrip. Experimental Brain Research 53, 277–284.

    Google Scholar 

  • Wing, A.M. and Fraser, C. (1983). The contribution of the thumb to reaching movements. Quaterly Journal of Experimental Psychology 35A, 297–309.

    CAS  Google Scholar 

  • Wing, A.M., Turton, A., and Fraser, C. (1986). Grasp size and accuracy of approach in reaching. Journal of Motor Behavior 18, 245–260.

    PubMed  CAS  Google Scholar 

  • Zeki, S. (1993) A vision of the brain. Blakwell, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jeannerod, M. (1996). The Neural Control of Object-Oriented Actions. In: Lacquaniti, F., Viviani, P. (eds) Neural Bases of Motor Behaviour. NATO ASI Series, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2403-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2403-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4695-6

  • Online ISBN: 978-94-017-2403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics