Skip to main content

In Situ Hybridization in Plants — Methods and Application

  • Chapter
Molecular Techniques in Crop Improvement

Abstract

Cytogenetics is complementary to genetic and molecular analysis of plant genome structure and function. Since its beginning it has been mainly used for identification of chromosomes in plant genomes and karyotype construction (karyotyping). The cytological techniques applied to karyotyping should be easy, reproducible, and should be able to identify major structural rearrangements that can occur between chromosomes. Most significant for the progress in plant cytogenetics was the development of the squash method for chromosome preparation (Darlington, 1937), chromosome banding techniques (Caspersson et al., 1968) and in situ hybridization (ISH) techniques (Pardue and Gall, 1969), especially fluorescent in situ hybridization (FISH) (Pinkel et al., 1986). These methods have had a major impact on investigation and understanding of plant genome organisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbasi, F. M., Brar, D. S., Carpena, A. L., Fukui, K., and Khush, G. S. (1999) Detection of autosyndetic and allosyndetic pairing among A and E genomes of Oryza through genomic in situ hybridization. Rice Genetic Newsletter 16, 24–25.

    Google Scholar 

  • Ambros, P. F., Matzke, M. A., and Matzke, J. M. (1986) Detection of 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma 94, 11–18.

    CAS  Google Scholar 

  • Anamthawat-Jonsson, K. and Reader, S. M. (1995) Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome 38, 814–816.

    PubMed  CAS  Google Scholar 

  • Anamthawat-Jonsson, K., Schwarzacher, T., and Heslop-Harrison, J. S. (1993) Behavior of parental genomes in the hybrid Hordeum vulgare x H. bulbosum. J. Hered. 84, 78–82.

    Google Scholar 

  • Anamthawat-Jonsson, K., Schwarzacher, T., Leitch, A. R., Bennett, M. D., and HeslopHarrison, J. S. (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor. Appl. Genet. 79, 721–728.

    CAS  Google Scholar 

  • Ansari, H, A., Ellison, N. W., Reader, S. M., Badaeva, E. D., Friebe, B., Miller, T. E., and Williams, W. M. (1999) Molecular cytogenetic organization of 5S and 18S–26S r DNA loci in white clover (Trifolium repens L) and related species. Ann. Bot. 83, 199–206.

    CAS  Google Scholar 

  • Aragon-Alcaide, L., Miller, T., Schwarzacher, T., Reader, S., and Moore, G. (1996) A cereal centromeric sequence. Chromosoma 105, 261–268.

    PubMed  CAS  Google Scholar 

  • Badaeva, E. D., Friebe, B., and Gill, B. S. (1996) Genome differentiation in Aegilops. 2. Physical mapping of 55 and 18S–26S ribosomal RNA gene families in diploid species. Genome 39, 1150–1158.

    PubMed  CAS  Google Scholar 

  • Bedbrook, J. R., Jones, J., ODell, M., Thompson, R. D., and Flavell, R. B. (1980) Molecular characterisation of telomeric heterochromatin in Secale species. Cell 19, 545–560.

    PubMed  CAS  Google Scholar 

  • Bennett, M. D. (1998) Plant genome values: how much do we know? Proc. Natl. Acad. Sci. USA 95, 2011–2016.

    PubMed  CAS  Google Scholar 

  • Bennett, S. T., Kenton, A. Y., and Bennett, M. D. (1992) Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Geramineae). Chromosoma 101, 420–424.

    Google Scholar 

  • Brandes, A., Heslop-Harrison, J. S., Kamm, A., Kubis, S., Doudrick, R. L., and Schmidt, T. (1997) Comparative analysis of the chromosomal and genomic organization of Tylcopia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol. Biol. 33, 11–21.

    PubMed  CAS  Google Scholar 

  • Brown, S. E., Stephens, J. L., Lapitan, N. L. V., and Knudson, D. L. (1999) FISH landmarks for barley chromosomes (Hordeum vulgare L.). Genome 42, 274–281.

    PubMed  CAS  Google Scholar 

  • Busch, W., Helrurann, R. G., and Martin, R. (1995). Refined physical mapping of the Sec-I locus on the satelite of chromosome 1R of rye (Secale cereale). Genome 38, 889–893.

    PubMed  CAS  Google Scholar 

  • Cao, M., Sleper, D. A., Dong, F., and Jiang, J. (2000) Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43, 398–403.

    CAS  Google Scholar 

  • Caspersson, T., Farber, S., Foley, G. E., Kudynowski, E. J., Modest, E. J., Simonsson, E., Wagh, U., and Zech, L. (1968) Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 214–222.

    Google Scholar 

  • Castilho, A., Miller, T. E., and Heslop-Harrison, J. S. (1996) Physical mapping of translocation breakpoints in a set of wheat-Aegilops umbellulata recombinant lines using in situ hybridization. Theor. Appl. Genet. 93, 816–825.

    CAS  Google Scholar 

  • Chen, C. C., Yan, H., Zhai, W., Zhu, L., and Sun, J. (2000) Identification and chromosomal location of a new tandemly repeated DNA in maize. Genome 43, 181–184.

    PubMed  CAS  Google Scholar 

  • Chen, Q. and Armstrong, K. (1994) Genomic in situ hybridization in Avena saliva. Genome 37, 607–612.

    CAS  Google Scholar 

  • Chen, Q., Conner, R. L. Laroche, A., Ji, W., Armstrong, K. C., and Fedak, G. (1999) Genomic in situ hybridization analysis of Thinopyrum chromatin in a wheat Th. intermedium partial amphiploid and six derived chromosome addition lines. Genome 42, 1217–1223

    CAS  Google Scholar 

  • Chen, Q., Conner, R. L., Laroche, A., and Thomas, J. B. (1998) Genome analysis of Thinopyrum intermedium and Th. ponticum using genomic in situ hybridization. Genome 41, 580–586.

    PubMed  CAS  Google Scholar 

  • Clarke, B. C., Mukai, Y., and Appels, R. (1996) The Sec-1 locus on the short arm of chromosome 1R of rye (Secale cereale). Chromosoma 105, 269–275.

    PubMed  CAS  Google Scholar 

  • D’Hont, A., Paget-Goy, A., Escoute, J., and Carreel, F. (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor. Appl. Genet. 100, 183.

    Google Scholar 

  • Darlington, C. D. (1937) ‘Recent Advances in Cytology,“ Churchill, London.

    Google Scholar 

  • deJong, J. H., Fransz, P., and Zabel, P. (1999). High-resolution FISH in plants-techinques and applications. Trends in Plant Sci. 4, 258–263.

    Google Scholar 

  • Dong, F., Song, J., Naess, S. K., Helgeson, J. P., Gebhardt, C., and Jiang, J. (2000) Development and application of a set of chromosome-specific cytogenetic DNA markers in potato. Theor. Appl. Genet. 101, 1001–1007.

    CAS  Google Scholar 

  • Doudrick, R. L., Heslop-Harrison, J. S., Nelson, C. D., Schmidt, T., Nance, W. L., and Schwarzacher, T. (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in situ hybridization and fluorochrome banding. J Hered 86, 286–296.

    Google Scholar 

  • Escalante, A., Imanishi, S., Hossain, M., Ohmido, N., and Fukui, K. (1998) RFLP analysis and genomic in situ hybridization (GISH) in somatic hybrides and their progeny between Lycopersicon esculentum and Solanum lycopersicoides. Theor. Appl. Genet. 96, 719–726.

    CAS  Google Scholar 

  • Fedak, G., Chen, Q., Conner, R. L., Laroche, A., Petroski, R., and Armstrong, K. W. (2000) Characterization of wheat-Thinopyrum partial amphidiploids by meiotic analysis and genomic in situ hybridization. Genome 43, 712–719.

    PubMed  CAS  Google Scholar 

  • Flavell, R. B., O’Dell, M., and Thompson, W. F. (1988) Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J. Mol. Biol. 204, 523–534.

    PubMed  CAS  Google Scholar 

  • Fransz, P. F., Alfonso-Blanco, C., Liharska, T. B., Peeters, A. J. M., Zabel, P., and de Jong, H. J. (1996a) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers. Plant J. 9, 421–430.

    PubMed  CAS  Google Scholar 

  • Fransz, P. F., Stam, M., ten Hoopen, R., and Nanninga, N. (1996b) Detection of single-copy genes and chromosome rearrangements in petunia hybrida by fluorescence in situ hybridization. Plant J. 9, 767–774.

    CAS  Google Scholar 

  • Fransz, P. F., Armstrong, K., Alonso-Blanco, C., Fisher, T. C., Trres-Ruiz, R., and Jones, G. (1998) Cytogenetics for model system Arabidopsis thaliana. Plant J. 13, 421–430.

    Google Scholar 

  • Frary, A., Presting, G. G., and Tanksley, S. D. (1996) Molecular mapping of the centromeres of tomato chromosomes 7 and 9. Mol. Gen. Genet. 250, 295–304.

    PubMed  CAS  Google Scholar 

  • Friebe, B., Jiang, J., Gill, B. S., and Dyck, P. L. (1993) Radiation-induced nonhomoeologous wheat Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl. Genet. 86, 141–149.

    Google Scholar 

  • Friebe, B., Kynast, R. G., and Gill, B. S. (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res. 8, 501–511.

    PubMed  CAS  Google Scholar 

  • Friebe, B., Mukai, Y., Dhaliwal, H. S., Martin, T. J., and Gill, B. S. (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor. Appl. Genet. 81, 381–389.

    Google Scholar 

  • Fuchs, J. and Schubert, I. (1998) Characterization of plant genomes using fluorescence in situ hybridization. In “Plant Cytogenetics” (J. Maluszynska, Ed.), Wydawnictwo Uniwersytetu Slaskiego, Katowice.

    Google Scholar 

  • Fukui, K. And Nakayama, S. Eds (1996) Plant Chromosomes: Laboratory Methods. Boca Raton: CRC Press.

    Google Scholar 

  • Fukui, K., Ohmido, N., and Khush, G. S. (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor. Appl. Genet. 87, 893–899.

    CAS  Google Scholar 

  • Fukui, K., Shishido, R., and Kinoshita, T. (1997) Identification of the rice D-genome chromosomes by genomic in situ hybridization. Theor. Appl. Genet. 95, 1239–1245.

    CAS  Google Scholar 

  • Garriga-Caldera, F., Huigen, D. J., Filotico, F., Jacobsen, E., and Ramanna, M. S. (1997) Identification of alien chromosomes through GISH and RFLP analysis and the potential for establishing potato lines with monosomic additions of tomato chromsomes. Genome 40, 666–673.

    Google Scholar 

  • Garriga-Caldera, F., Huigen, D. J., Jacobsen, E., and Ramanna, M. S. (1999) Prospects for introgressing tomato chromosomes into the potato genome: An assessment through GISH analysis. Genome 42, 282–288.

    Google Scholar 

  • Gatt, M., Hammett, K., Murray B. (1999) Confirmation of ancient polyploidy in Dahlia (Asteraceae) species using genomic in situ hybridization. Ann. Bot. 84: 39–48.

    Google Scholar 

  • Gaut, B. S., Le Thierry d’Ennequin, M., Peek, A. S., and Sawkins, M. C. (2000) Maize as a model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. USA 97, 7008–7015.

    CAS  Google Scholar 

  • Gill, K. S., Gill, B. S., and Endo, T. R. (1993) A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma 102, 374–381.

    CAS  Google Scholar 

  • Gomez, M. I., Islam-Faridi, M. N., Woo, S.-S., Schertz, K. F., Czeschin, D., Zwick, M. S., Wing, R. A., Stelly, D. M., and Price, J. H. (1997) FISH of a mize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40, 475–478.

    CAS  Google Scholar 

  • Gustafson, J. P. (1983) Cytogenetics of triticale. In “Cytogenetics of Crop Plant” ( M. S. Swaminathan, P. K. Gupta, and U. Sinha, Eds.), MacMillan India, Delhi.

    Google Scholar 

  • Gustafson, J. P., Butler, E., and McIntyre, C. L. (1990). Physical mapping of low-copy DNA sequences in rye (Secale cereale L.). Proc. Natl. Acad. Sci. USA 87, 1899–1902.

    PubMed  CAS  Google Scholar 

  • Hall, K. J. and Parker, J. S. (1995) Stable chromosome fission associated with rDNA mobillity. Chromosome Res. 3, 417–422.

    PubMed  CAS  Google Scholar 

  • Hanson, R. E., Islam-Faridi, M. N., Crane, C. F., Zwick, M. S., Czeschin, D. G., Wendel, J. F., McKnight, T. D., Price, H. J., and Stelly, D. M. (2000) Tyl-copia-retrotransposon behaviour in a polyploid cotton. Chromosome Res. 8, 73–76.

    PubMed  CAS  Google Scholar 

  • Hasterok, R., Jenkins, G., Langdon, T., Jones, N., and Maluszynska, J. (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor. Appl. Genet. 103: 486–490.

    CAS  Google Scholar 

  • Hasterok, R. and Maluszynska, J. (2000a) Different rRNA gene expression in primary and adventitious roots of Allium cepa L. Folio Histochemica et Cytobiologica 38, 181–184.

    CAS  Google Scholar 

  • Hasterok, R. and Maluszynska, J. (2000b) Nucleolar dominance does not occure in root tip cells of allotetraploid Brassica species. Genome 43, 574–579.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. S. (1991) The molecular cytogenetics of plant. J. Cell Sci. 100, 15–21.

    CAS  Google Scholar 

  • Heslop-Harrison, J. S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A. V., Alkhimova, E. G., Kamm, A., Doudrick, R. L., Schwarzacher, T., Katsiotis, A., Kubis, S., Pearce, S. R., Flavell, A. J., and Harrison, G. E. (1997) The chromosomal distribution of Tylcopia group of retrotransposable elements in higher plants and their implication for genome evolution. Genetica 100, 197–204.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, J. S., Leitch, A. R., Schwarzacher, T., and Anamthawat-Jonsson, K. (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity 65, 385–392.

    Google Scholar 

  • Heslop-Harrison, J.S. and Schwarzacher, T. (1996) Genomic Southern and in situ hybridization for plant genome analysis. In: Jauhar PP, ed. Methods of Genome Analysis in Plants. Boca Raton: CRC, 163–179.

    Google Scholar 

  • Hohmann, U., Zoller, J., Herrmann, R. G., and Kazman, M. E. (1999) Physical mapping and molecular-cytogenetic analysis of substitutions and translocations involving chromosome 1D in synthetic hexaploid triticale. Theor. Appl. Genet. 98, 647–656.

    CAS  Google Scholar 

  • Iglesias, V. A., Moscone, E. A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M., and Matzke, A. J. M. (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9, 1251–1264.

    PubMed  CAS  Google Scholar 

  • Jellen, E. N., Gill, B. S., and Cox, T. S. (1994) Genomic in situ hybridization differentiates between A/D and C-genome chromatin and detects intergenomic translocations in poliploid oat species (genus Avena). Genome 37, 613–618.

    Google Scholar 

  • Jiang, J., Hulbert, S. H., Gill, B. S., and Ward, D. C. (1996) Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol. Gen. Genet. 252, 497–502.

    PubMed  CAS  Google Scholar 

  • Jones, R. N. (1995) B chromosomes in plants. Transley Review No. 85. New Phytol. 131, 411–434.

    Google Scholar 

  • Katsiotis A., Hagidimitriou, M., Heslop-Harrison, J.S. (1997) The close relationship between the A and B genomes in Avena L. determined by molecular cytogenetic analysis of total genomic, Tandemly and dispersed repetitive DNA sequences Ann. Bot. 79: 103–109

    CAS  Google Scholar 

  • Kenton, A., Parokonny, A. S., Gleba, Y. Y., and Bennett, M. D. (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genet. 240, 159–169.

    PubMed  CAS  Google Scholar 

  • Khrustaleva, L.I., Kik, C. (2000) Introgression of Allium fistulosum into A. Cepa mediated by A. roylei. Theor. Appl. Genet. 100: 17–26.

    Google Scholar 

  • King, I. P., Purdie, K. A., Orford, S. E., Reader, S. M., and Miller, T. E. (1993) Detection of homoeologous chiasma formation in Triticum durum x Thinopyrum bessarabicum hybrids using genomic in situ hybridization. Heredity 71, 369–372.

    Google Scholar 

  • Kishii, M., Nagaki, K., Tsujimoto, H. and Sasakuma, T. (1999) Exclusive localization of tandem repetitive sequences in subtelomeric heterochromatin regions of Leymus racemosus (Poaceae, Triticeae). Chromosome Res. 7, 519–529.

    PubMed  CAS  Google Scholar 

  • Kosina, R. And Heslop-Harrison J.S. (1996) Molecular cytogenetics of an amphiploid trigeneric hybrid between Triticum durum, Thinopyrum distichum and Lophopyrum elongatum. Ann. Bot. 78: 583–589

    Google Scholar 

  • Kubis, S., Schmidt, T., and Heslop-Harrison, J. S. (1998) Repetitive DNA elements as a major component of plant genomes. Ann. Bot. 82, 45–55.

    CAS  Google Scholar 

  • Kuipers, A. G. J., Heslop-Harrison, J. S. P., and Jacobsen, E. (1998) Characterisation and physical location of Tyl-copia-like retrotransposons in four Alstroemeria species. Genome 41, 357–367.

    PubMed  CAS  Google Scholar 

  • Kumar, A. and Bennetzen, J. L. (1999) Plant retrotransposons. Annu. Rev. Genet. 33, 479–532.

    PubMed  CAS  Google Scholar 

  • Langdon, T., Seago, Ch., Jones, R. N., Oughan, H., Thomas, H., Forster, J. W., and Jenkins, G. (1999) De novo evolution of satellite DNA on rye B chromosome. Genetics 154, 869–884.

    Google Scholar 

  • Langdon, T., Seago, Ch., Mende, M., Leggett, M., Thomas, H., Forster, J. W., Jones, R. N., and Jenkins, G. (2000) Retrotransposon evolution in diverse plant genomes. Genetics 156, 313–325.

    PubMed  CAS  Google Scholar 

  • Lange, W. (1988) Cereal cytogenetics in retrospect. What came true of some cereal cytogenetics’ pipe dreams? Euphytica 8, 7–25.

    Google Scholar 

  • Langer-Safer, P., Levine, M., and Ward, D. C. (1982) Immunocytological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 79, 4381–4385.

    PubMed  CAS  Google Scholar 

  • Le, H. T. and Armstrong, K. C. (1991) In situ hybridization as a rapid means to assess meiotic pairing and detection of alien DNA transferes in interphase cells of wide crosses involving wheat and rye. Mol. Gen. Genet. 225, 33–37.

    PubMed  CAS  Google Scholar 

  • Lehler, H., Busch, W., Martin, R., and Hellmann, R. G. (1993) Localization of the B-hordein locus on barley chromosomes using fluorescence in situ hybridization. Chromosoma 102, 428–432.

    Google Scholar 

  • Leitch, A. R., Schwarzacher, T., and Leitch, I. J. (1994) The use of fluorochromes in the cytogenetics of the small-grained cereales (Triticeae). Histochemical Journal 26, 471–479.

    PubMed  CAS  Google Scholar 

  • Leitch, A. R., Schwarzacher, T., Mosgoller, W., Bennett, M. D., and Heslop-Harrison, J. S. (1991) Parental genome are separated throughout the cell cycle in plant hybrid. Chromosoma 101, 206–213.

    CAS  Google Scholar 

  • Leitch I. J. and Bennett M.D. (1997) Polyploidy in angiosperms. Trends in Plant Science 2, 470–476

    Google Scholar 

  • Leitch, I. J. and Heslop-Harrison, J. S. (1992) Physical mapping of the 18S-5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35, 1013–1018.

    CAS  Google Scholar 

  • Leitch, I. J. and Heslop-Harrison, J. S. (1993) Physical mapping for four sites of 5S rDNA sequences and one side of the alfa-amylase gene in barley (Hordeum vulgare). Genome 36, 517–523.

    PubMed  CAS  Google Scholar 

  • Leitch, I. J., Leitch, A. R., and Heslop-Harrison, J. S. (1991a) Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome 34, 329–333.

    Google Scholar 

  • Leitch, I. J., Leitch, A. R., Schwarzacher, T., Maluszynska, J., Anamthawat-Jonsson, K., Shi, M., Harrison, G., and Heslop-Harrison, J. S. (1991b) Two-colour mapping of plant DNA sequences using digoxigenin and biotin. Boehringer Mannheim Update 4, 10–11.

    Google Scholar 

  • Lichter, P. (1997) Multicolor FISHing: what’s the catch? Trends in Genet. 13, 475–479.

    CAS  Google Scholar 

  • Lim, K.Y., Leitch I.J., Leitch, A.R. (1998) Genomic characterisation and the detection of raspberry chromatin in polyploid Rubus. Theor. Appl. Genet. 97, 1027–1033.

    Google Scholar 

  • Lim, K.Y., Matyasek, R., Lichtenstein, C.P. and Leitch A.R. (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109, 245–258

    PubMed  CAS  Google Scholar 

  • Lima-Brito, J., Guedes-Pinto, H., Harrison, G. E., and Heslop-Harrison, J. S. (1997) Molecular cytogenetic analysis of dumm wheat x tritordeum hybrids. Genome 40, 362–369.

    PubMed  CAS  Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M. I., Town, C. D., Fujii, C. Y., Mason, T., Bowman, C. L., Barnstead, M., Feldblyum, T. V., Buell, C. R., Ketchum, K. A., Lee, J., Rosining, C. M., Koo, H. L., Moffat, K. L., Cronin, L. A., Shen, M., Pal, G., Van Aken, S., Umayam, L., Tallon, L. J., Gill, J. E., Adams, M. D., Carrera, A. J., Creasy, T. H., Goodman, H. M., Somerville, C. R., Copenhaver, G. P., Preuss, D., Nierman, W. C., White, O., Eisen, J. A., Salzberg, S. L., Fraser, C. M., and Venter, J. C. (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768.

    CAS  Google Scholar 

  • Linde-Laursen, I. and Bothmer, R. (1988) Elimination and duplication of particular Hordeum vulgare chromosomes in aneuploid interspecific Hordeum hybrids. Theor. Appl. Genet. 76, 897–908.

    Google Scholar 

  • Lukaszewski, A. J. and Gustafson, J. P. (1983) Translocations and modifications of chromosomes in Triticale x wheat hybrides. Theor. Appl. Genet. 64, 239–248.

    Google Scholar 

  • Maluszynska, J. and Heslop-Harrison, J. S. (1991). Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1, 159–166.

    Google Scholar 

  • Maluszynska, J. and Schweizer, D. (1989) Ribosomal RNA genes in B chromosomes of Crepis capillaris detected by non-radioactive in situ hybridization. Heredity 62, 5965.

    Google Scholar 

  • Martin, A., Rubiales, D., and Cabrera, A. (1998) Meiotic pairing in a trigeneric hybrid Triticum tauschii-Agropyron cristatum-Hordeum chilense. Hereditas 129, 113–118.

    Google Scholar 

  • Martinez-Zapater, J. M., Estelle, M. A., and Somerville, C. R. (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol. Gen. Genet. 204, 417–423.

    CAS  Google Scholar 

  • Martini, G. and Flavell, R. (1985) The control of nucleolus volume in wheat, a genetic study at three developmental stages. Heredity 54, 111–120.

    Google Scholar 

  • Mesbah, M., Wennekes-van Eden, J., Hans de Jong, J., De Bock, T. S. M., and Lange, W. (2000) FISH to mitotic chromosomes and extended DNA fibres of Beta procumbens in a series of monosomic additions to beet (B. vulgaris). Chromosome Res. 8, 285–293.

    PubMed  CAS  Google Scholar 

  • Miller, J. T., Dong, F., Jackson, S. A., Song, J., and Jiang, J. (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150, 1615–1625.

    PubMed  CAS  Google Scholar 

  • Mikhailova E.I., Naranjo T., Shepherd K., Wennekes-van Eden, J., Heyting C., de Jong J.H. (1998) The effect of the wheat Phi locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107: 339–350.

    PubMed  CAS  Google Scholar 

  • Molnar-Lang, M., Linc, G., Friebe, B. R., and Sutka, J. (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112, 117–123.

    Google Scholar 

  • Moore, G., Lucas, H., Batty, N., and Flavell, R. (1991) A family of retrotransposons and associated genomic variation in wheat. Genomics 10, 461–468.

    PubMed  CAS  Google Scholar 

  • Morais-Cecilio, L., Delgado, M., Jones R.N., Viegas, W. (2000) Modification of wheat rDNA loci by B chromosomes: a chromatin organization model. Chromosome Research 8: 341–371.

    PubMed  CAS  Google Scholar 

  • Moscone, E., Klein, F., Lambrou, M., Fuchs, J., and Schweizer, D. (1999) Quantitative kartotyping and dual-color FISH mapping of 55 and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42, 1224–1233.

    PubMed  CAS  Google Scholar 

  • Moscone, E., Matzke, M. A., and Matzke, A. J. M. (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105, 231–236.

    CAS  Google Scholar 

  • Mukai, Y., Endo, T. R., and Gill, B. S. (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma 100, 71–78.

    Google Scholar 

  • Mukai, Y., Friebe, B., Hatchett, J. H., Yamamoto, M., and Gill, B. S. (1993a) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102, 88–95.

    Google Scholar 

  • Mukai, Y., Nakahara, Y., and Yamamoto, M. (1993b) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total gemomic and highly repeated DNA probes. Genome 36, 489–494.

    PubMed  CAS  Google Scholar 

  • Murata, M., Heslop-Harrison, J. S., and Motoyoshi, F. (1997) Physical mapping of the 55 ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. Plant J. 12, 31–37.

    PubMed  CAS  Google Scholar 

  • Ohmido, N., Akryama, Y., and Fukui, K. (1998) Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol.Biol. 38, 1043–1052.

    PubMed  CAS  Google Scholar 

  • Ohmido, N. and Fukui, K. (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35, 963–968.

    PubMed  CAS  Google Scholar 

  • Ohmido, N., Kijima, K., Akiyama, Y., de Jong, J. H., and Fukui, K. (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol. Gen. Genet. 263, 388–394.

    PubMed  CAS  Google Scholar 

  • Orgaard, M. and Heslop-Harrison, J. S. (1994) Investigation of genome relationships between Leymus, Psathyrotachys and Hordeum by genomic DNA:DNA in situ hybridization. Ann. Bot. 73, 195–203.

    Google Scholar 

  • Orgaard, M., Jacobsen, N., and Heslop-Harrison, J. S. (1995) The hybrid origin of two cultivars of Crocus (Iridaceae) analysed by molecular cytogenetics including genomic Southern and in situ hybridization. Ann. Bot. 76, 253–262.

    Google Scholar 

  • Osuji, J. O., Harrison, G., Crouch, J., and Heslop-Harrison, J. S. (1997) Identification of the genomic constitution of Musa L.(bananas, plantaines and hybrides) using molecular cytogenetics. Ann. Bot. 80, 787–793.

    CAS  Google Scholar 

  • Pardue, M. L. and Gall, J. G. (1969) Molecular hybridization of radioactive DNA to DNA of cytological preparation. Proc. Natl. Acad. Sci. USA 64, 600–604.

    PubMed  CAS  Google Scholar 

  • Pearce, S. R., Harrison, G., Li, D., Heslop-Harrison, J. S., Kumar, A., and Flavell, A. J. (1996a) The Ty/-copia group retrotranspsons in Vicia species: copy number, sequence heterogenity and chromosomal localization. Mol. Gen. Genet. 250, 305–315.

    PubMed  CAS  Google Scholar 

  • Pearce, S. R., Pich, U., Harrison, G., Flavell, A. J., Heslop-Harrison, J. S., Schubert, L, and Kumar, A. (I 996b) The Tyl-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res. 4, 365–371.

    Google Scholar 

  • Pearce, S. R., Harrison, G., Heslop-Harrison, J. S., Flavell, A. J., and Kumar, A. (1997) Characterization and genomic organization of Tyl-copia group retrotransposons in rye (Secale cereale). Genome 40, 617–625.

    PubMed  CAS  Google Scholar 

  • Pedersen, C., Zimny, J., Becker, D., Jaime-Gartner, A., and Lörz, H. (1997) Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor. Appl. Genet. 94, 749–757.

    CAS  Google Scholar 

  • Pedersen, C., Giese, H., and Linde-Laursen, I. (1995) Towards an integration of the physical and the genetic chromosome maps of barley by in situ hybridization. Hereditas 123, 77–88.

    CAS  Google Scholar 

  • Pickering, R. A., Malyshev, S., Kunzel, G., Johnston, P. A., Korzun, V., Menke, M., and Schubert, I. (2000) Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor. Appl. Genet. 100, 27–31.

    CAS  Google Scholar 

  • Pinkel, D., Straume, T., and Gray, J. W. (1986) Cytogenetic anlysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83, 2934–2938.

    PubMed  CAS  Google Scholar 

  • Poggio, L., Confalonieri, V., Comas, C., Cuadrado, A., Jouve, N., and Naranjo, C. A. (1999) Genomic in situ hybridization (GISH) of Tripsacum dactyloides and Zea mays ssp. mays with B chromosomes. Genome 42, 687–691.

    CAS  Google Scholar 

  • Presting, G. G., Malysheva, L., Fuchs, J., and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.

    PubMed  CAS  Google Scholar 

  • Puzina, J., Javornik, B., Bohanec, B., Schweizer, D., Maluszynska, J., and Papes, D. (1999) Random amplified polymorphic DNA analysis, genome size, and genomic in siyu hybridization of triploid viviparous onions. Genome 42, 1208–1216.

    Google Scholar 

  • Rayburn, A. L. and Gill, B. S. (1985) Use of biotin-labeled probes to map specific sequences on wheat chromosomes. J. Hered. 76, 78–81.

    Google Scholar 

  • Ribeiro-Carvalho, C., Guedes-Pinto, H., Harrison, G., and Heslop-Harrison, J. S. (1997) Wheat-rye chromosome transcocations involving small terminal and intercalary rye chromsome segments in the Portuguese wheat landrace Barbela. Heredity 78, 539–546.

    Google Scholar 

  • Richards, E. J. and Ausubel, F. M. (1988) Isolation of higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136.

    CAS  Google Scholar 

  • Richards, E. J., Goodman, H. M., and Ausubel, F. M. (1991) The centromere region of Arabidopsis thaliana chromosome I contains telomere-similar sequences. Nucleic Acids Res. 19, 3351–3357

    PubMed  CAS  Google Scholar 

  • Schmidt, T. and Heslop-Harrison, J. S. (1996) The physical and genomic organization of microsatellites in sugar beet. Proc. Natl. Acad. Sci. USA 93, 8761–8765.

    PubMed  CAS  Google Scholar 

  • Schmidt, T. and Heslop-Harrison, J. S. (1996) The physical and genomic organization of microsatellites in sugar beet. Proc. Natl. Acad. Sci. USA 93, 8761–8765.

    PubMed  CAS  Google Scholar 

  • Schmidt, T., Kubis, S., and Heslop-Harrison, J. S. (1995) Analysis and chromosomal localization of retrotransposon in sugar beet (Beat vulgaris L.): LINEs and Ty/-copialike elements as major components of the genome. Chromosome Res. 3, 335–345.

    PubMed  CAS  Google Scholar 

  • Schmidt, T., Kubis, S., Katsiotis, A., Jung, C., and Heslop-Hathson, J. S. (1998) Molecular and chromosomal organization of two repetitive DNA sequences with intercalary locations in sugar beet and other Beta species. Theor. Appl. Genet. 97, 696–704.

    CAS  Google Scholar 

  • Schubert I. and Wobus U. (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148

    Google Scholar 

  • Schwarzacher, H. G., Mikelsaar, A. V., and Schnedl, W. (1978) The nature of the Ag-staining of nucleolus organizer regions: electron-and ligth-microscopic studies on human cells in interphase, mitosis and meiosis. Cytogenet. Cell Genet. 20, 24–39.

    PubMed  CAS  Google Scholar 

  • Schwarzacher, T., Anamthawat-Jonsson, K., Harrison, G. E., Islam, A. K. M. R., Jia, J. Z., King, I. P., Leitch, A. R., Miller, T. E., Reader, S. M., Rogers, W. J., Shi, M., and Heslop-Harrison, J. S. (1992) Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet. 84, 778–786.

    CAS  Google Scholar 

  • Schwarzacher, T. and Heslop-Harrison, J. S. (1991) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34, 317–323.

    Google Scholar 

  • Schwarzacher, T. and Heslop-Harrison, J. S. (2000) Practical in situ Hybridization, BIOS, Oxford.

    Google Scholar 

  • Sharma A.K. and Sharma A. (1999) Plant Chromosomes: Analysis, Manipulation and Engineering. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Shishido, R., Sano, Y., and Fukui, K. (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mo1.Gen.Genet. 263, 586–591.

    CAS  Google Scholar 

  • Soltis, P. S. and Soltis, D. E. (2000) The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA 97, 7051–7057.

    PubMed  CAS  Google Scholar 

  • Suoniemi, A., Anamthawat-Jonsson, K., Arm, T., and Schulman, A. H. (1996) Retrotransposon BARE-1 is a major, dispersal component of the barley (Hordeum vulgare L.) genome. Plant Mol. Biol. 30, 1321–1329.

    PubMed  CAS  Google Scholar 

  • Svitashev, S., Ananiev, E., Pawlowski, W. P., and Somers, D. A. (2000) Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor. Appl. Genet. 100, 872–880.

    CAS  Google Scholar 

  • Takahashi, C., Leitch, I. J., Ryan, A., Bennett, M. D., and Brandham, P. E. (1997) The use of genomic in situ hybridization (GISH) to show transmission of recombinanat chromsomes by a partially fertile bigeneric hybrid, Gasteria lutzii x Aloe aristata (Aloaceae), to its progeny. Chromosoma 105, 342–348.

    PubMed  CAS  Google Scholar 

  • Takahashi, C. Marshall, J.A., Bennett, M.D., Leitch I.J. (1999) Genomic relationships between maize and its wild relatives. Genome 42: 1201–1207.

    CAS  Google Scholar 

  • Taketa, S., Ando, H., Takeda, K., and Harrison, G. E. (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor. Appl. Genet. 100, 169–176.

    CAS  Google Scholar 

  • Tang, S., Li, Z., Jia, X., and Larkin, P. J. (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor. Appl. Genet. 100, 344–352.

    CAS  Google Scholar 

  • ten Hoopen, R., Montijn, B. M., Veuskens, J., Oud, J. L., and Nanninga, N. (1999) The spatial localization of T-DNA insertions in petunia interphase nuclei: consequences for chromosome organization and transgene insertion sites. Chromosome Res. 7, 611–623.

    PubMed  Google Scholar 

  • ten Hoopen, R., Robbins, T. P., Fransz, P. F., Montijn, B. M., Oud, O., Gerats, A. G. M., and Nanninga, N. (1996) Localization of T-DNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell 8, 823–830.

    PubMed  Google Scholar 

  • Thomas, H. M., Morgan, W. G., Meredith, M. R., Humphreys, M. W., Thomas, H., and Leggett, J. M. (1994) Identification of parentall and recombined chromosomes in hybrid derivatives of Lolium multillorum x Festuca pratensis by genomic in situ hypridization. Theor. Appl. Genet. 88, 909–913.

    Google Scholar 

  • Vershinin, A.V., Alkhimova, E.G. and Heslop-Harrison, J.S. (1996) Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chrom. Res. 4: 517–525.

    PubMed  CAS  Google Scholar 

  • Vershinin, A.V., Schwarzacher, T. and Heslop-Hamson, J.S. (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7, 1823–1833

    PubMed  CAS  Google Scholar 

  • Wang, Z. X., Kurata, N., Katayose, Y., and Minobe, Y. (1995) A chromosome 5-specific repetitive DNA sequence in rice (Oryza sativa L.). Theor. Appl. Genet. 90, 907–913.

    CAS  Google Scholar 

  • Weiss H. and Maluszynska J. (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thalina. Hereditas 133: 255–261

    PubMed  CAS  Google Scholar 

  • Weiss, H., Pasierbek, P., and Maluszynska, J. (1999). An improved nonfluorescent detection system for in situ hybridization in plants. Biotechnic and Histochemistry 75, 49–53.

    Google Scholar 

  • Wolters, A.-M. A., Trindade, L. M., Jacobsen, E., and Visser, R. G. F. (1998) Fluorescence in situ hybridization on extended DNA fibres as a tool to analyse complex T-DNA loci in potato. Plant J. 13, 837–847.

    CAS  Google Scholar 

  • Xu, J. and Earle, E. D. (1994) Direct and sensitive fluorescence in situ hybridization of 45S rDNA on tomato chromosomes. Genome 37, 1062–1065.

    PubMed  CAS  Google Scholar 

  • Yang, Q. Hanson, L. Bennett, M.D.and Leitch, I..J. (1998) Genome structure and evolution in the allohexaploid weed Avena fatua L. (Poaceae). Genome 42: 512–518.

    Google Scholar 

  • Zhong, X. B., Fransz, P. F., Wennekes-van Eden, J., Ramanna, M. S., Van Kaminen, A., Zabel, P., and de Jong, J. H. (1998) FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J. 13, 507–517.

    PubMed  CAS  Google Scholar 

  • Zhong, X. B., Hans de Jong, J., and Zabel, P. (1996) Preparation of tomato meiotic pachyten and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res. 4, 24–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maluszynska, J. (2002). In Situ Hybridization in Plants — Methods and Application. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2356-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2356-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5982-6

  • Online ISBN: 978-94-017-2356-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics