Skip to main content

Use of marker genes in competition studies of Rhizobium

  • Chapter
Molecular Microbial Ecology of the Soil

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 83))

  • 303 Accesses

Abstract

Use of marker genes has several advantages in studying rhizobial competition compared to traditional approaches. Reporter genes such as the ß-glucuronidase gene (gusA) or a thermostable ß-glucosidase gene (celB) allow detection of rhizobial strains in nodules when they are still attached to the root system. Analysis is extremely simple, fast and permits a high data throughput. This detection technique is therefore highly suitable for the study of rhizobial competition and studies using gusA-marked strains of Rhizobium are presented. By making use of gusA and celB, differentially marked strains can be produced and distinguished easily on roots. The availability of two marker genes permits competition studies of two or more than two strains and analysis of dual nodule occupancy. As this methodology does not require sophisticated equipment, a GUS Gene Marking Kit was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkermans A D L, Mirza M S, Harmsen H J M, Blok H J, Herron P R, Sessitsch A and Akkermans W M 1994 Molecular ecology of microbes: A review of promises, pitfalls and true progress. FEMS Microbiol. Rev. 15, 185–194.

    Article  CAS  Google Scholar 

  • Beattie G A and Handelsman J 1989 A rapid method for the isolation and identification of Rhizobium from root nodules. J. Microbiol. Meth. 9, 29–33.

    Article  Google Scholar 

  • Beattie G A, Clayton M K and Handelsman J 1989b Quantitative comparison of the laboratory and field competitiveness of Rhizobium leguminosarum by. phaseoli. Appl. Environm. Microbiol. 55, 2755 2761.

    Google Scholar 

  • Berger J A, May S N, Berger L R and Bohlool B B 1979 Colorimetrie enzyme-linked immunosorbent assay for the identification of strains of Rhizobium in culture and in the nodules of lentils. Appt. Environ. Microbiol. 37, 642–646.

    Google Scholar 

  • Broughton W J, Heycke N, Priefer U, Schneider G-M and Stanley J 1987 Ecological genetics of Rhizobium meliloti: diversity and competitive dominance. FEMS Microbiol. Let. 40, 245–249.

    Google Scholar 

  • Bushby H V A 1981 Quantitative estimation of rhizobia in non-sterile soil using antibiotics and fungicides. Soil Biol. Biochem. 13, 237–239.

    Google Scholar 

  • Cebolla A, Ruiz-Berraquero F and Palomares A J 1991 Expression and quantification of firefly luciferase under control of Rhizobium meliloti symbiotic promoters. J. Biolumin. and Chemolumin. 6, 177–184.

    Article  CAS  Google Scholar 

  • Cebolla A, Ruiz-Berraquero F and Palomares A J 1993 Stable tagging of Rhizobium meliloti with the firefly luciferase gene for environmental monitoring. Appt Environm. Microbiol. 54, 1812–1817.

    Google Scholar 

  • de Bruijn F J 1992 Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appt. Environ. Microbiol. 58, 2180–2187.

    Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U and Timmis K T 1990 MiniTn5 transposon derivatives for insertion mutagenesis, promoter

    Google Scholar 

  • probing, and chromosomal insertion of cloned DNA in Gram-negative Eubacteria. J. Bacteriol. 172, 6568–6572.

    Google Scholar 

  • de Weger L A, Dunbar P, Mahafee W F, Lugtenberg B J J and Sayler G S 1991 Use of bioluminescence reporters to detect Pseudomonadas spp. in the rhizosphere. Appl. Environ. Microbiol. 57, 3641–3644.

    Google Scholar 

  • Drahos D J, Hemming B C and McPherson S 1986 Tracking recombinant organisms in the environment: ß-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Bio/Technology 4, 439–444.

    Article  CAS  Google Scholar 

  • Dudman W F 1971 Antigenic analysis of Rhizobium japonicum by immunodiffusion. Appl. Microbiol. 21, 973–985.

    CAS  Google Scholar 

  • Fischer H-M 1994 Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 58, 352–396.

    CAS  Google Scholar 

  • Frederickson J K, Bezdicek D F, Brockman F E and Li S W 1988 Enumeration of Tn5 mutant bacteria in soil by using a most-probable number DNA-hybridization procedure ant antibiotic resistance. Appl. Environ. Microbiol. 54, 446–453.

    Google Scholar 

  • Gault R R, Byrne P T and Brockwell J 1973 Apparatus for surface sterilization of individual legume root nodules. Laboratory Practice 22, 292–294.

    Google Scholar 

  • Harrison S P, Mytton L R, Skot L, Dye M and Cresswell A 1992 Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can. J. Microbiol. 38, 1009–1015.

    Google Scholar 

  • Herrero M, de Lorenzo V and Timmis K T 1990 Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosome insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172, 6557–6567.

    CAS  Google Scholar 

  • Jefferson R A and Wilson K J 1991 The GUS gene fusion system. In Plant Molecular Biology Manual. Eds. S Gelvin, R Schilperoort and D P Verma. pp B14/1 - B14 /33. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Jefferson R A, Kavanagh T A and Bevan M W 1987 GUS fusions, ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    CAS  Google Scholar 

  • Josey D P, Beynon J L, Johnston A W B and Beringer J E 1979 Strain identification of Rhizobium using intrinsic antibiotic resistance. J. Appl. Bacteriol. 46, 343–350.

    Google Scholar 

  • Judd A K, Schneider M, Sadowsky M J and de Bruijn F J 1993 Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl. Environm. Microbiol. 59, 1702–1708.

    Google Scholar 

  • Katupitiya S, New P B, Elmerich C and Kennedy I R 1995 Improved N2-fixation in 2,4-D-treated wheat roots associated with A. lipoferum: studies of colonization using reporter genes. Soil Biol. Biochem. 27, 447–452.

    Google Scholar 

  • Krishnan H B and Pueppke S G 1992 A no1C-lacZ gene fusion in Rhizobium fredii facilitates direct assessment of competition for nodulation of soybean. Can. J. Microbiol. 38, 515–519.

    Article  CAS  Google Scholar 

  • Lam S T, Ellis D M and Ligon J M 1990 Genetic approaches for studying rhizosphere colonization. Plant Soil 129, 11–18.

    Article  Google Scholar 

  • McDermott T R and Graham P H 1989 Bradyrhizobium japonicum inoculant mobility, nodule occupancy and acetylene reduction in the soybean root system. Appl. Environm. Microbiol. 55, 2493–2498.

    Google Scholar 

  • O’ Kane D J, Lingle W L, Wampler J E, Legocki M, Legocki R P and Szalay A A 1988 Visualization of bioluminescence as a marker of gene expression in rhizobium-infected soybean root nodules. Plant Mol. Biol. 10, 387–399.

    Google Scholar 

  • Pepper I, L, Josephson K L, Nautiyal C S and Bourque D P 1989 Strain identification of highly-competitive bean rhizobia isolated from root nodules: Use of fluorescent antibodies, plasmid profiles and gene probes. Soil Biol. Biochem. 21, 749–753.

    Google Scholar 

  • Reuber T L, Long S L and Walker G C 1991 Regulation of Rhizobium meliloti exo genes in free-living cells and in planta examined using TnphoA fusions. J. Bacteriol. 173, 426–434.

    CAS  Google Scholar 

  • Richardson A E, Viccars L A, Watson J M and Gibson A H 1995 Differentiation of Rhizobium strains using the polymerise chain reaction with random and directed primers. Soil Biol. Biochem. 27, 515–524.

    Google Scholar 

  • Schmidt E L, Bakole R O and Bohlool B B 1968 Fluorescent antibody approach to the study of rhizobia in soil. J. Bacteriol. 95, 1987–1992.

    CAS  Google Scholar 

  • Selbitschka W, Pühler A and Simon R 1992 The construction of recA-deficient Rhizobium meliloti and R. leguminosarum strains marked with gusA or luc cassettes for use in risk-assessment studies. Molec. Ecol. 1, 9–19.

    Google Scholar 

  • Sessitsch A, Wilson K J, Akkermans A D L and de Vos W M 1996 Simultaneous detection of different Rhizobium strains marked with the Escherichia coli gusA and the Pyrococcus furiosus celB gene. Appl. Environ. Microbiol. 62, 4191–4194.

    Google Scholar 

  • Sessitsch A, Jjemba P K, Hardarson G, Akkermans A D L and Wilson K J 1997a Measurement of the competitiveness index of Rhizobium tropici strain CIAT899 derivatives marked with the gusA gene. Soil Biol. Biochem. 29, 1099–1110.

    Google Scholar 

  • Sessitsch A, Wilson K J, Akkermans A D L and de Vos W M 1997b The celB marker gene. In Molecular Microbial Ecology Manual. Eds. A D L Akkermans, J D van Elsas and F J de Bruijn. 611: 115. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Sharma S B and Signer E R 1990 Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Develop. 4, 344–356.

    Article  CAS  Google Scholar 

  • Shishido M and Pepper I L 1990 Identification of dominant indigenous Rhizobium meliloti by plasmid profiles and intrinsic antibiotic resistance. Soil Biol. Biochem. 22, 11–16.

    Google Scholar 

  • Silcock D, Waterhouse R N, Glover L A, Prosser J I and Kilham K 1992 Detection of a single genetically engineered modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl. Environ. Microbiol. 58, 2444–2448.

    Google Scholar 

  • Somasegaran P and Hoben H J 1985 Methods in Legume-Rhizobium Technology. NiITAL Project, University of Hawaii, HI.

    Google Scholar 

  • Springer N, Ludwig W and Hardarson G 1993 A 23S rRNA targeted specific hybridization probe for Bradyrhizobium japonicum. System. Appl. Microbiol. 16, 468–470.

    Google Scholar 

  • Steffan R J and Atlas R M 1991 Polymerase chain reaction: applications in environmental microbiology. Ann. Rev. Microbiol. 45, 137–161.

    Article  CAS  Google Scholar 

  • Streit W, Kosch K and Werner D 1992 Nodulation competitiveness of Rhizobium leguminosarum by. phaseoli and Rhizobium tropici strains measured by glucuronidase (gus) gene fusion. Biol. Fert. Soils 14, 140–144.

    Google Scholar 

  • Streit W, Botero L, Werner D and Beck D 1995 Competition for nodule occupancy on Phaseolus vulgaris by Rhizobium etli and R. tropici can be efficiently monitored in an ultisol during the early stages of growth using a constitutive GUS gene fusion. Soil Biol. Biochem. 27, 1075–1081.

    Google Scholar 

  • Turco R F, Moorman T B and Bezdicek D F 1986 Effectiveness and competitiveness of spontaneous antibiotic resistant mutants of Rhizobium leguminosarum and Rhizobium japonicum. Soil Biol. Biochem. 18, 259–262.

    Google Scholar 

  • Voorhorst W G B, Eggen R I L, Luesink E J and de Vos W M Characterization of the celB gene coding for ß-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and mutation analysis in Escherichia coli. J. Bacteriol. 177: 7105–7111.

    Google Scholar 

  • Wilson K J 1995 Molecular techniques for the study of rhizohial ecology in the field. Soil Biol. Biochem. 27, 501–514.

    CAS  Google Scholar 

  • Wilson K J, Giller K E and Jefferson R A 1991 Glucuronidase (GUS) operon fusions as a tool for studying plant-microbe interactions. In Advances in Molecular Genetics of Plant—Microbe Interactions, Vol. 1 Eds. H Hennecke and D P S Verma. pp 226–229. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Wilson K J, Hughes S G and Jefferson R A 1992 The Escherichia coli gus operon, induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In GUS Protocols, Using the GUS Gene as a Reporter of Gene Expression. Eds. S Gallagher. pp 7–23. Academic Press, New York.

    Google Scholar 

  • Wilson K J, Sessitsch A and Akkermans A D L 1994 Molecular markers as tools to study the ecology of microorganisms. In Beyond the Biomass. Compositional and Functional Analysis of Soil Microbial Communities. Eds. K Ritz, J Dighton and K E Giller. pp 149–156. John Wiley, Chichester.

    Google Scholar 

  • Wilson K J, Sessitsch A, Corbo J C, Giller K E, Akkermans A D L and Jefferson R A 1995 ß-glucuronidase ( GUS) transposons for ecological studies of rhizobia and other Gram-negative bacteria. Microbiology 141, 1691–1705.

    Google Scholar 

  • Winstanley C, Morgan J A W, Pickup R W and Saunders J R 1991 Use of a xylE marker gene to monitor survival of recombinant Pseudomonas populations in lake water by culture on nonselective media. Appt Environ. Microbiol. 57, 1905–1913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sessitsch, A., Hardarson, G., de Vos, W.M., Wilson, K.J. (1998). Use of marker genes in competition studies of Rhizobium . In: Hardarson, G., Broughton, W.J. (eds) Molecular Microbial Ecology of the Soil. Developments in Plant and Soil Sciences, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2321-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2321-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5099-1

  • Online ISBN: 978-94-017-2321-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics