Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 321))

Abstract

The quest for purely organic magnetic materials has been the subject of intensive research activity during the last decade[1]. The goal of this research is the preparation of a material that combines the inherent properties of organic compounds with an usable magnetic property, like for instance ferromagnetism, ferrimagnetism or superparamagnetism. It is expected that such materials will have peculiar and probably unprecedented properties not shown by the traditional inorganic magnetic materials based on metallic or ionic lattices. Some of the foreseeable advantages of the organic and polymeric over the traditional materials have been discussed elsewhere.[2] They might become superior to traditional magnets as far as applications involving light absorption are concerned. In fact, organic compounds are usually transparent in many spectral regions and could be in principle obtained in optically active chiral forms. Thus, they might be used as magneto-optical switches and for the manipulation of polarized light in optical devices. Organic materials are generally electric insulators, so they might lead to insulating magnets in contrast with most of the traditional magnets that are electric conductors. Plasticity, flexibility and solubility in common organic solvents are general characteristics of organic/polymeric compounds that confer them an easy processability. Therefore, organic/polymeric magnets are ideal candidates to obtain magnetically active thin films and colloidal dispersions with ferrofluid properties. Biocompatibility is another characteristic of organic compounds that permits to imagine biomedical applications like for instance the use of organic magnets for drug addressing and as selective contrasting agents in nuclear magnetic resonance imaging. Finally, the state-of-the-art of organic chemistry techniques permits nowadays to synthesize tailor-made compounds and, therefore, to perform small structural modifications in order to tune their physical properties. Such a tunability is unprecedented in most of traditional inorganic materials and, therefore, open a wide range of practical opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gatteschi, D., Kahn, O., Miller, J.S., and Palacio F. (eds.) (1991) Molecular Magnetic Materials, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  2. Iwamura, H. and Miller, J.S. (eds.) (1993) Proceedings of International Symposium on Chemistry and Physics of Molecular Based Magnetic Materials Tokyo, Japan 25–30 October 1992, in Mol. Cryst. Liy. Cryst., 1993.

    Google Scholar 

  3. Miller, J.S. and Epstein, A.J. (1994)Angew. Chem. Int. Ed. Engl. 33, 385–415.

    Google Scholar 

  4. Kahn, O. (1993) Molecular Magnetism, VCH Publishers, New York

    Google Scholar 

  5. Miller, J.S. (ed) (1995) Proceedings of International Symposium on Chemistry and Physics of Molecular Based Magnetic Materials, Salt Lake City, 16–21 October 1994, in Mal. Cryst. Liy. Cryst., 1995.

    Google Scholar 

  6. Landee, C.P., Melville, D., and Miller, J.S., (1991) Molecular Magnetic Materials. Applications Discussion, in Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F. (eds.), Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht, pp. 395.

    Chapter  Google Scholar 

  7. Carlin, R.L. (1988) Magnetochemistry, Springer Verlag, Berlin.

    Google Scholar 

  8. Palacio, F. (1991) From Ferromagnetic Interactions to Molecular Ferromagnets: An Overview of Models and Materials, in Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F. (eds.), Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht, pp. 1.

    Chapter  Google Scholar 

  9. Iwamura, H. (1990) Adv. Phys. Org. Chem., 26, 179.

    Article  CAS  Google Scholar 

  10. Kollmar, C., Kahn, O., (1993) Acc. Chem. Res., 26, 259.

    Article  CAS  Google Scholar 

  11. Kahn, O., Hendrickson, D.N., Iwamura, H., and Veciana, J. (1991) The Design Strategies. Round Table Discussion, in Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F. (eds.), Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht, pp. 385.

    Chapter  Google Scholar 

  12. Forrester, A.R., Hay, J.M., and Thompson, R.H. (1968) Organic Chemistry of Stable Free Radicals. Academic Press, London.

    Google Scholar 

  13. Mendenhall, G.D., Griller, D., and Ingold, K.U. (1975) Chemistry in Britain, 10, 284.

    Google Scholar 

  14. Griller, D. and Ingold, K.U. (1976)Acc. Chem. Res. 9, 13.

    Google Scholar 

  15. Ballester, M. (1989) Adv. Phys. Org. Chem. 25, 267.

    Article  CAS  Google Scholar 

  16. Landolt-Bömstein (1979) Magnetic Properties of Free Radicals, New series, Group II, Vol. 9, Springer-Verlag, Berlin.

    Google Scholar 

  17. Anderson, P.W. (1963) in Rado, G.T. and Suhl, H. (eds.), Magnetism, Vol. 1, Academic Press, New York.

    Google Scholar 

  18. Willet, R.D., Gatteschi, D., and Kahn, O. (eds.) (1985) Magneto-Structural Correlations in Exchange Coupled Systems, NATO ASI Series Reidel, Dordrecht.

    Google Scholar 

  19. Kahn, O. (1993) Molecular Magnetism, VCH Publishers, New York.

    Google Scholar 

  20. Salem, L. and Rowland, C. (1972) Angew. Chem. Int. Ed. Engl. 11, 92.

    Article  CAS  Google Scholar 

  21. Harrison, J.F. and Allen, L.C. (1969) J. Am. Chem. Soc. 91, 807.

    Article  CAS  Google Scholar 

  22. Harrison, J.F. (1971) J. Am. Chem. Soc. 93, 4112.

    Google Scholar 

  23. Higuchi, J. (1963) J. Chem. Phys. 38, 1237 and 1847.

    Google Scholar 

  24. Dupeyre, R.-M., Rassat, A. and Ronzaud, J. (1974) J. Am. Chem. Soc., 96, 6559.

    Article  CAS  Google Scholar 

  25. Rassat, A. and Chiarelli, R. (1991) Magnetic Properties of Some Biradicals of D a, (or approximate D,d ) Symmetry, Extended-Dioxygen Analogues, in Gatteschi, D., Kahn, O., Miller, J.S., and Palacio, F. (eds.), Magnetic Molecular Materials, Kluwer Academic Publishers, Dodrecht, pp. 191.

    Chapter  Google Scholar 

  26. Chiarelli, R., Rassat, A. and Rey, P. J. Chem. Soc., Chem. Commun., 1081.

    Google Scholar 

  27. Chiarelli, R., Novak, M.A., Rassat, A. and Tholence, J.L. (1993) Nature, 363, 147.

    Article  CAS  Google Scholar 

  28. Veciana, J., Vidal, J. and Jullian, N. (1989) Mol. Cryst. Gig. Cryst., 176, 199

    Google Scholar 

  29. Vidal-Gancedo, J. (1993), PhD Thesis, Universitat de Barcelona.

    Google Scholar 

  30. Baumgarten, M. and Müller, U. (1993) Synth. Met., 57, 4751.

    Google Scholar 

  31. Baumgarten, M. and Mullen, K. (1994) Top. Curr. Chem, 167, 1.

    Article  Google Scholar 

  32. Dougherty, D.A. (1991) Acc. Chem. Res.,24, 88 and references cited therein.

    Google Scholar 

  33. Hay, P.J., Thiebeault, J.C., Hoffmann, R. (1975), J. Am. Chem. Soc. 97, 4884.

    Article  CAS  Google Scholar 

  34. McConnell, H.M. (1963) J. Chem. Phys., 39, 1910.

    Article  CAS  Google Scholar 

  35. Izoka, A., Murata, S., Sugawara, T., lwamura, H. (1985) J. Am. Chem. Soc. 107, 1786.

    Article  Google Scholar 

  36. Breslow, R., Hill, R. and Wassermann, E. (1964) J. Am. Chem. Soc., 86, 5349.

    Article  CAS  Google Scholar 

  37. Breslow, R., Chang, H.W., Hill, R. Wassermann, E. (1967) J. Am. Chem. Soc., 89, 1112.

    Google Scholar 

  38. Breslow, R., Juan B., Klutz, R.Q., Xia, C.Z. (1982) Tetrahedron 38, 863.

    Article  CAS  Google Scholar 

  39. Breslow, R., Maslak, P., Thomasides, J. (1984) J. Am. Chem. Soc. 106, 6453.

    Article  CAS  Google Scholar 

  40. Chiang, L.Y., Goshorn D.D. (1989) Mol. Cryst. Liq. Cryst., 176, 229.

    CAS  Google Scholar 

  41. McConnell, H.M. (1967) Proc. Robert A. Welch Found. Conf. Chem. Res., 11, 144.

    Google Scholar 

  42. Miller, J.S. and Epstein, A.J. (1987) J. Am. Chem. Soc., 109, 3850.

    Article  CAS  Google Scholar 

  43. Allemand, P.M., Khemani, K.C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Grüner, G., and Thompson, J.D. (1991) Science 253, 301.

    Article  CAS  Google Scholar 

  44. Iwamura, H. and Koga, N. (1993), Acc. Chem. Res. 26, 346–351.

    Article  CAS  Google Scholar 

  45. Borden, W.T., Iwamura, H., Berson, J.A. (1994) ibid. 27, 109.

    Google Scholar 

  46. Borden, W.T. and Davidson, E.R. (1977) J. Am. Chem. Soc., 99, 4587.

    Article  CAS  Google Scholar 

  47. Dowd, P., Chang, W., Paik, Y.H. (1986) J. Am. Chem. Soc., 108, 7416. Ibid (1987) 109, 5284.

    Google Scholar 

  48. Roth, W.R., Kowalczick, U. Maier, G., Reisenauer, H.P., Sustmann, R., Müller, W. (1987) Angew. Chem. Int. Ed. Engl., 26, 1285.

    Google Scholar 

  49. Wright, B.B. and Platz, M.S. (1983) J. Am. Chem. Soc., 105, 628.

    Article  CAS  Google Scholar 

  50. Du, P. and Borden, W.T. (1987) J. Am. Chem. Soc., 109, 930.

    Article  CAS  Google Scholar 

  51. Veciana,J., Rovira, C., Crespo, M.I., Armet, O., Domingo, and Palacio, F. (1991) J. Am. Chem. Soc., 113, 2552.

    Google Scholar 

  52. Ovchinikov, A.A. (1978) Theor. Chim. Acta, 47, 297.

    Article  Google Scholar 

  53. Klein, D.J. Pure Appl. Chem., 55, 299.

    Google Scholar 

  54. Jacobs, Si., Shultz, D.A., Jain, R., Novak, J., Dougherty, D.A. (1993) J. Am. Chem, Soc., 115, 1744.

    Article  CAS  Google Scholar 

  55. Fujita, I., Teki, Y., Takui, T., Kinoshita, T., Itoh, K., Miko, F., Sawaki, Y., Iwamura, H., Izuoka, A., Sugawara, T. (1990) J. Am. Chem. Soc.,112, 4074 and references therein.

    Google Scholar 

  56. Rajca, A. (1994) Chem. Rev., 94, 871.

    Article  CAS  Google Scholar 

  57. Veciana, J., Rovira, C., Ventosa, N., Crespo, M.I. and Palacio, P. (1993) J. Am. Chem. Soc., 115, 57.

    Article  CAS  Google Scholar 

  58. Nakamura, N., Inoue, K., Iwamura, H., (1993) Angew. Chem. Int. Ed. Engl., 32, 873.

    Article  Google Scholar 

  59. Rajca, A., S. Utamapanya (1993) J. Am. Chem. Soc., 115, 106–881.

    Google Scholar 

  60. Nishide, H., Kaneko, T., NH, T., Katoh, K., Tsuchida, E., Yamaguchi, K. (1995) J. Am. Chem. Soc., 117, 548.

    Article  CAS  Google Scholar 

  61. Rajca, A., Rajca, S., Desai, S.R. (1995) J. Am. Chem. Soc., 117, 806.

    Article  CAS  Google Scholar 

  62. All ferromagnetic behaviors claimed up to date for high-spin macromolecules came from ill-characterized polymers and in most cases they seem to have extrinsic magnetic properties. See: Miller, J.S. (1992) Adv. Mat.,4, 298 and 435.

    Google Scholar 

  63. For a review of molecular solids exhibiting bulk ferromagnetism, see: Kinoshita, M. (1994) Jpn. J. Appl. Phys., 33, 5718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Veciana, J. (1996). Organic Magnetic Materials. In: Coronado, E., Delhaès, P., Gatteschi, D., Miller, J.S. (eds) Molecular Magnetism: From Molecular Assemblies to the Devices. NATO ASI Series, vol 321. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2319-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2319-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4724-3

  • Online ISBN: 978-94-017-2319-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics