Skip to main content

Control of the N-Glycosylation of Therapeutic Glycoproteins Produced in Transgenic Plants: A New Challenge for Glycobiologists

  • Chapter
  • 256 Accesses

Abstract

The protein synthesis and folding machinery in plant and animal cells are so similar that many therapeutic proteins have already been successfully produced in transgenic plants. Most of these recombinant proteins are indistinguishable from their mammalian counterpart, as far as amino acid sequence, conformation and eventually biological activity are concerned. With regards to post-translational modifications such as glycosylation, mammalian glycoproteins are found to be glycosylated when they are produced in transgenic plants. However, plants, as other eukaryotic expression systems, are not ideal for production of pharmaceutical proteins because they produce molecules with N-glycans that differ from those on animal glycoproteins. This could represent a limitation to the use of plant-derived recombinant glycoproteins devoted to therapeutic applications since the presence of plant-specific glyco-epitopes on these molecules may elicit immune responses in humans. This has highlighted that controlling the N-glycosylation of glycoproteins is therefore a major scientific challenge on the way to obtain plant-derived recombinant glycoproteins compatible with therapeutic uses. Therefore, it seems timely to provide an update on current aspects on N-glycan processing in plants and on emerging glycobiology research on therapeutic proteins produced in transgenic plants. In this review, the first part will draw a broad overview on many aspects of the structure and the biosynthesis of plant N-glycans, as well as of the analytical tools that have been developed for the identification of these oligosaccharides. The second part will be focused on the N-glycosylation of therapeutic glycoproteins produced in transgenic plants and on the strategies that are currently developed to engineer the glycosylation in plants to obtain recombinant glycoproteins with human-like N-glycans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalberse RC, Koshte V and Clemens JG, 1981. Cross-reactions between vegetable foods, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant, Int Arch Allergy Appl Immunol, 66: 259–260

    Article  CAS  Google Scholar 

  • Altmann F, 1997. More than silk and honey-or, can insect cells serve in the production of therapeutic glycoproteins? Glycoconjugate J, 14: 643–6

    Article  CAS  Google Scholar 

  • Altmann F, Paschinger K, Dalik T and Vorauer K, 1998. Characterisation of peptide-N4-(Nacetyl-p-glucosaminyl)asparagine amidase A and its N-glycans. Eur J Biochem, 252: 118–123

    Article  PubMed  CAS  Google Scholar 

  • Annan RS and Can SA, 1997. The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J Protein Chem, 16: 391–402

    Article  PubMed  CAS  Google Scholar 

  • Bakker H, Lommen A, Jordi W, Stiekema,W and Bosch D, 1999. An Arabidopsis thaliana cDNA complements the N-acetylglucosaminyltransferase I deficiency of CHO Lecl cells. Biochem Biophys Res Commm, 261: 829–832

    CAS  Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V V, Elbers I I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P and Bosch D, 2001. Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A, 98: 2899–2904

    Article  PubMed  CAS  Google Scholar 

  • Bardor M, Faye L and Lerouge P, 1999a. Analysis of the N-glycosylation of recombinant glycoproteins produced in transgenic plants. Trends in Plant Science 9: 376–380

    Article  Google Scholar 

  • Bardor M, Loutelier-Bourhis C, Marvin L, Cabanes-Macheteau M, Lange C, Lerouge P and Faye L, 1999b. Analysis of plant glycoproteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry: Application to the N-glycosylation analysis of bean phytohemagglutinin, Plant Physiol Biochem, 37: 319–325

    Article  CAS  Google Scholar 

  • Bardor M, Cabanes-Macheteau M, Faye L and Lerouge P, 2000. Monitoring the N-glycosylation by fluorophore-assisted carbohydrate electrophoresis. Electrophoresis, 12: 2550–2556

    Article  Google Scholar 

  • Bollini R, Vitale A and Chrispeels MJ, 1983. In vivo and in vitro processing of seed reserve protein in the endoplasmic reticulum: Evidence for two glycosylation steps. J Cell Biol 96: 999–1007

    Article  PubMed  CAS  Google Scholar 

  • Bonin CP, Potter I, Vanzin GF and Reiter WD, 1997. The mur 1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA, 94: 2085–2090

    CAS  Google Scholar 

  • Boyd PN, Lines AC and Patel AK, 1995. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol, 32: 311–318

    Article  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Lainé AC, Loutelier-Bourhis C, Lange C, Vine N, Ma J, Lerouge P and Faye L, 1999. N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology, 9: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Ashford DA, Nimtz M, Bento I, Frazao C, Esteves CL, Faro CJ, Kervinen J, Pires E, Verissimo P, Wlodawer A and Carrondo MA, 1997. The glycosylation of the aspartic proteinases from barley (Hordeum vulgare L.) and cardoon (Cynara cardunculus L.). Eur J Biochem, 243: 695–700

    Article  PubMed  CAS  Google Scholar 

  • Crawley SC, Hindsgaul O, Ratcliffe RM, Lamontagne LR and Palcic MM, 1989. A plant fucosyltransferase with human lewis blood-group specificity. Carbohyd Res, 193: 249–256

    Article  CAS  Google Scholar 

  • Crofts AJ, Leborgne-Castel N, Pesca M, Vitale A and Denecke J, 1998. Bip and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell, 10: 813–823

    PubMed  CAS  Google Scholar 

  • Essl D, Dirnberger D, Gomord V, Strasser R, Faye L, Glossi J and Steinkellner H, 1999. The N-terminal 77 amino-acids from tobacco N-acetylglucosaminyltransferase I are sufficient to target a reporter protein to the Golgi apparatus of Nicotiana benthamiana. FEBS Lett, 453: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Evans SC, Youakim A and Shur BD, 1995. Biological consequences of targeting beta 1,4-galactosyltransferase to two different subcellular compartments. Bioessays, 17: 261–268

    Article  PubMed  CAS  Google Scholar 

  • Faye L and Chrispeels MJ, 1985. Characterization ofN-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal Biochem, 149: 218–224

    Article  PubMed  CAS  Google Scholar 

  • Faye L and Chrispeels MJ, 1998. Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconjugate J, 5: 245–256

    Article  Google Scholar 

  • Faye L, Sturm A, Bollini R, Vitale A and Chrispeels MJ, 1986. The position of the oligosaccharide side-chains of phytohemagglutinin and their accessibility to glycosidases determines their subsequent processing in the Golgi. Eur J Biochem, 158: 655–661

    Article  PubMed  CAS  Google Scholar 

  • Faye L, Gomord V, Fitchette-Lainé AC and Chrispeels MJ, 1993. Affinity purification of antibodies specific for Asn-linked glycans containing al-3 fucose or ß1–2 xylose. Anal Biochem, 209: 104–108

    Article  PubMed  CAS  Google Scholar 

  • Fitchette-Lainé AC, Gomord V, Chekkafi A and Faye L, 1994. Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J, 5: 673–682

    Article  Google Scholar 

  • Fitchette-Lainé AC, Gomord V, Cabanes M, Michalski JC, Saint-Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P and Faye L, 1997. N-glycans harboring the lewis a epitope are expressed at the surface of plant cells. Plant J, 12: 1411–1417

    Article  PubMed  Google Scholar 

  • Fitchette AC, Cabanes-Macheteau M, Marvin L, Martin B, Satiat-Jeunemaitre B, Gomord V, Crooks K, Lerouge P, Faye L and Hawes C, 1999. Biosynthesis and immunolocalization of Lewis A-containing N-glycans in the plant cell. Plant Physiol, 121: 333–343

    Article  PubMed  CAS  Google Scholar 

  • Fötisch K, Altmann F, Haustein D and Vieths S, 1999. Involvement of carbohydrate epitopes in the IgE response of celery-allergic patients. Int Arch Allergy Immunol, 120: 30–42

    PubMed  Google Scholar 

  • Friedman Y and Higgins EA, 1995. A method for monitoring the glycosylation of recombinant glycoproteins from conditioned medium, using fluorophore-assisted carbohydrate electrophoresis. Anal Biochem, 228: 221–225

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Casado G,Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G and Gomez L, 1996. Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology, 6: 471–477

    Google Scholar 

  • Gomez L and Chrispeels MJ, 1994. Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding Nacetylglucosaminyltransferase I. Proc Natl Sci USA, 91: 1829–1833

    Article  CAS  Google Scholar 

  • Gomord V, Denmat LA and Fitchette-Lainé, AC, Satiat-Jeunemaitre, B, Hawes C and Faye L, 1997. The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J, 11: 101–103

    Google Scholar 

  • Gray JSS, Yang BY, Hull SR, Venzke DP and Montgomery R, 1996. The glycans of soybean peroxidase.Glycobiology, 6: 23–32

    Article  CAS  Google Scholar 

  • Hammond C, Braakman I and Helenius A, 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA, 91: 913–917

    Article  PubMed  CAS  Google Scholar 

  • Harvey JH, 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrometry Reviews, 18: 349–451

    Article  PubMed  CAS  Google Scholar 

  • Hein MB, Tang Y, McLeod DA, Janda KD and Hiatt A, 1991. Evaluation of immunoglobulins from plant cells. Biotechnol Prog„ 7: 455–461

    Article  PubMed  CAS  Google Scholar 

  • Jackson P, 1994. High-resolution polyacrylamide gel electrophoresis of fluorophore-labeled reducing saccharides, Methods in Enzymol, 230: 250–265

    Article  CAS  Google Scholar 

  • Johnson KD and Chrispeels MJ, 1987. Substrate specificities ofN-acetylglucosaminyl-, fucosyl-, and xylosyltransferases that modify glycoproteins in the Golgi apparatus of bean cotyledons. Plant Physiol, 84: 1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Kamerlink JP,199I. Xylose-containing carbohydrate chains derived from glycoproteins. Pure Appl Chem, 63: 465–472

    Google Scholar 

  • Kaufmann R,1995. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. J Biotechnol, 41: 155–175

    Google Scholar 

  • Kaushal G, Pastuszak I, Hatanaka KI, and Elbein AD, 1990a. Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J Biol Chem, 265: 16271–16279

    PubMed  CAS  Google Scholar 

  • Kaushal G, Szumilo T, Pastuszak I and Elbein AD, 1990b. Purification to homogeneity and properties of mannosidase II from mung bean seedlings. Biochemistry, 29: 2168–2176

    Article  PubMed  CAS  Google Scholar 

  • Khoo KH, Chatterjee D, Caufield JP, Morris HR and Dell A, 1997. Structural mapping of the glycans from the egg glycoproteins of Schistosoma mansoni and Schistosoma japonicum: identification of novel core structures and terminal sequences. Glycobiology, 7: 663–667

    Article  PubMed  CAS  Google Scholar 

  • Khoudi H, Laberge S, Ferullo J-M, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R and Vézina L-P, 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotech Bioengin, 64: 135–143

    Article  CAS  Google Scholar 

  • Kimura Y, Hase S, Kobayashi Y, Kyogoku Y, Ikenaka T and Funatsu G, 1988. Structures of sugar of ricin D. J Biochem, 103: 944–949

    PubMed  CAS  Google Scholar 

  • Kimura Y, Hess D and Sturm A, 1999. The N-glycans of jack bean a-mannosidase. Eur J Biochem, 264: 168–175

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R and Kornfeld S, 1985: Assembly of asparagine-linked oligosaccharides. Ann Rev Biochem, 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Kurosaka A, Yano A, Itoh N, Kuroda Y, Nakagawa T and Kawasaki T, 1991. The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J Biol Chem, 266: 4168–4172

    PubMed  CAS  Google Scholar 

  • Leiter H, Mucha J, Staudacher E, Grimm R, Glössl J and Altmann FJ, Purification, 1999. eDNA cloning, and expression of GDP-L-Fuc:Asn-linked G1cNAc alpha 1,3-fucosyltransferase from mung beans. J Biol Chem, 274: 21830–21839

    Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fitchette-Lainé, A-C, Gomord V and Faye L, 1998. N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol, 38: 31–48

    Article  PubMed  CAS  Google Scholar 

  • Lis H and Sharon N, 1998. Soybean agglutinin–a plant glycoprotein. J Biol Chem, 253: 3468–3476

    Google Scholar 

  • Ma J, Hikmat BY, Vine ND, Chargelegue D, Yu L, Hein MB and Lehner T, 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med, 4: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Masada RI, Skop E and Starr CM, 1996. Fluorophore-assisted carbohydrate electrophoresis (FACE registered) for quality control of recombinant-protein glycosylation. Biotechnol Appl. Biochem, 24: 195–205

    CAS  Google Scholar 

  • Matsumoto S, Ikura K, Ueda M. and Sasaki R, 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol Biol, 27: 1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Melo NS, Nimtz M, Conradt HS, Fevereiro PS and Costa J, 1997. Identification of the human Lewisa carbohydrate motif in a secretory peroxidase from a plant cell suspension culture (Vaccinium myrtillus L.). FEBS Lett, 415: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Navazio L, Baldan B, Mariani P, Gerwig GJ and Vliegenthart JFG, 1996. Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconjugate J, 13: 977–983

    Article  CAS  Google Scholar 

  • Nebenführ A, Gallagher, LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB and Staehelin LA, 1999. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol, 121: 1127–1141

    Article  PubMed  Google Scholar 

  • Oxley D and Bacic A, 1995. Microheterogeneity of N-glycosylation on a stylar self-incompatibility glycoprotein of Nicotiana alata. Glycobiology, 5: 517–523

    Article  PubMed  CAS  Google Scholar 

  • Oxley D, Munro SLA, Craik DJ and Bacic A, 1996. Structure of N-glycans on the S3- and S6-allele stylar self-incompatibility ribonucleases ofNicotiana alata. Glycobiology, 6: 611–618

    Article  PubMed  CAS  Google Scholar 

  • Pagny S, Cabanes-Macheteau M, Gillikin JW, Leborgne-Castel N, Lerouge P, Boston RS, Faye L and Gomord V, 2000. Protein recycling from the Golgi to the endoplasmic reticulum is very active in plants but has a minor contribution to calreticulin retention. Plant Cell, 12: 739–755

    PubMed  CAS  Google Scholar 

  • Palacpac NQ, Yoshida S, Sakai H, Kimura Y, Kazuhito K, Yoshida T and Seki T, 1999. Stable expression of human beta 1,4- galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci USA, 8: 4692–4697

    Article  Google Scholar 

  • Parodi AJ, Mendelzon DH, Lederkremer GH and Martin-Barrientos J, 1984. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GIcNAc2 and Man,GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells. J Biol Chem, 259: 6351–6357

    PubMed  CAS  Google Scholar 

  • Raju TS, Briggs JB, Borge SM and Jones AJS, 2000. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology, 10: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Rayon R, Gomord V, Faye L and Lerouge P, 1996. N-glycosylation of phytohemagglutinin expressed in bean cotyledons or in transgenic tobacco plants. Plant Physiol Biochem, 34: 273–281

    CAS  Google Scholar 

  • Rayon C, Lerouge P and Faye L, 1998. The protein N-glycosylation in plants. J Exp Bot, 49: 1463–1472

    CAS  Google Scholar 

  • Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Saliot-Maire I, Lemoine J, Reiter WD, Lerouge P and Faye L, 1999. Characterization of N-glycans from Arabidopsis thaliana. Application to a fucose-deficient mutant. Plant Physiol, 119: 725–733

    Google Scholar 

  • Reiter WD, Chapple CCS and Somerville CR, 1993. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science, 261: 1032–1035

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki A, Makino Y, Omichi K, Odani S and Hase S, 1999. A new sugar chain of the proteinase inhibitor from latex of Carica papaya. J Biochem, 125: 560–565

    Article  PubMed  CAS  Google Scholar 

  • Starr C, Masada IR, Hague C, Skop E and Klock JC, 1996. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates, J Chromatogr, 720: 295–321

    Article  CAS  Google Scholar 

  • Staudacher E, Dalik T, Wawra P, Altmann F and März L, 1995. Functional purification and characterization of a GDP-fucose: 3-N-acetylglucosamine (Fuc to Asn linked G1cNAc) u-1,3-fucosyltransferase from mung beans. Glycoconjugate J, 12: 780–786

    Article  CAS  Google Scholar 

  • Steinkellner H, 1999. Reduction of GnTI activity in transgenic plants: effects on glycosylation patterns of recombinant proteins. International Molecular Farming Conference, London, Ontario, Canada

    Google Scholar 

  • Strasser R, Mucha J, Schwihla H, Altmann F, Glössl, J and Steinkellner H, 1999. Molecular cloning and characterization of cDNA coding for betal, 2N-acetylglucosaminyltransferase I (GIcNAc-TI) from Nicotiana tabacum. Glycobiology, 9: 779–785

    Article  PubMed  CAS  Google Scholar 

  • Sturm A and Chrispeels MJ, 1986. The high mannose oligosaccharide of phytohemagglutinin is attached to asparagine 12 and the modified oligosaccharide to asparagine 60. Plant Physiol, 80:320–322 oligosaccharides. Plant Physiol, 85: 741–745

    Article  Google Scholar 

  • Sturm A, van Kuik JA, Vliegenthart JFG and Chrispeels MJ, 1987b. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem, 262: 13392–13403

    PubMed  CAS  Google Scholar 

  • Sturm A, Bergwerff AA and Vliegenthart JFG, 1992. 1H-NMR structural determination of the N-linked carbohydrate chains on glycopeptides obtained from the bean lectin phytohemagglutinin. Eur J Biochem, 204: 313–316

    Google Scholar 

  • Szumilo T, Kaushal GP and Elbein AD, 1986a. Purification and properties of glucosidase I from mung bean seedlings. Arch Biochem Biophys, 247: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Szumilo T, Kaushal GP, Hori H and Elbein AD, 1986b. Purification and properties of a glycoprotein processing a-mannosidase from mung bean seedling. Plant Physiol, 81: 383–389

    Article  PubMed  CAS  Google Scholar 

  • Tezuka K, Hayashi M, Ishihara H, Akazawa T and Takahashi N, 1992. Studies on synthesis of xylose-containing N-linked oligosaccharides deduced from substrate specificities of the processing enzymes in sycamore cells (Ater pseudoplatanus L.). Eur J Biochem, 203: 401–413

    Article  PubMed  CAS  Google Scholar 

  • Trombetta SE, Bosch M and Parodi AJ, 1989. Glucosylation of glycoproteins by mammalian, plant, fungal and trypanosomatid protozoa microsomal membranes. Biochemistry 28, 8108–8116

    Article  PubMed  CAS  Google Scholar 

  • van Die I, Gomord V, Kooyman FNJ, van den Berg TK, Cummings RD and Vervelde L, 1999. Core al-3fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonclus contortus infected sheep. FEBS Lett, 463: 189–193

    Article  Google Scholar 

  • van Ree R and Aalberse RC, 1993. Pollen-vegetable food crossreactivity: serological and clinical relevance of crossreactive IgE. J Clin Immunoassay, 16: 124–130

    Google Scholar 

  • van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo JP, Loutelier-Bourhis C, Rayon C, Villalba M, Koppelman S, Aalberse R, Rodriguez R, Faye L and Lerouge P, 2000. ß (1, 2)-xylose and a(1, 3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem, 275: 11451–11458

    Article  PubMed  Google Scholar 

  • Vitale A and Chrispeels MJ, 1984. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol, 99: 133–140

    Article  PubMed  CAS  Google Scholar 

  • von Schaewen A, Sturm A, O’Neill J and Chrispeels MJ, 1993. Isolation of a mutant Arabidopsis plant that lacks N-acetylglucosaminyltransferase I is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol, 102: 1109–1118

    Article  Google Scholar 

  • Wee EQ, Sherrier DJ, Prime TA and Dupree P, 1998. Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell, 10: 1759–1768

    PubMed  CAS  Google Scholar 

  • Wenderoth I and von Schaewen A, 2000. Isolation and characterization of plant N-acetylglucosaminyltransferase I (GnT I) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant and in antisense plants. Plant Physiol, 123: 1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Wilson 1BH, Harthill JE, Mullin NP, Ashford DA and Altmann F, 1998. Core a 1, 3-fucose is a part of the epitope recognised by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8: 651–661

    Google Scholar 

  • Wright A and Morrison SL, 1997. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol, 15: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TC, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA and Whaley KJ, 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol, 16: 1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Bannon G, Thomas Hayden V, Rice K, Drake R and Elbein A, 1997. Purification and specificity of bl, 2-xylosyltransferase, an enzyme that contributes to the allergenicity of some plant proteins. J Biol Chem, 272: 31340–31347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lerouge, P., Bardor, M., Pagny, S., Gomord, V., Fitchette, AC., Faye, L. (2002). Control of the N-Glycosylation of Therapeutic Glycoproteins Produced in Transgenic Plants: A New Challenge for Glycobiologists. In: Erickson, L., Yu, WJ., Brandle, J., Rymerson, R. (eds) Molecular Farming of Plants and Animals for Human and Veterinary Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2317-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2317-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6110-2

  • Online ISBN: 978-94-017-2317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics