Skip to main content

Production of Antibodies in Alfalfa (Medicago Sativa)

  • Chapter
  • 259 Accesses

Abstract

Antibodies have long been recognized for their diagnostic and therapeutic potential. Advances in medicine and molecular biology, combined with the knowledge we will gather from the recent sequencing of the human genome, will pave the way to an even greater demand for antibody molecules. In order to satisfy this growing demand, alternative ways to current limiting production methods are being actively explored. Molecular farming of transgenic plants has gained a lot of attention in recent years as a promising large scale production and processing system. In this chapter, we will focus on a perennial legume crop, Medicago sativa (alfalfa), and its use in antibody production. Alfalfa benefits from several agronomic advantages such as nitrate fertilization-free cultivation, the existence of agricultural infrastructures and the possibility to rapidly produce clonal transgenic populations, making it a choice candidate for molecular farming purposes. Medicago’s molecular farming protocol comprises five steps. First, the gene encoding the protein of interest is inserted into alfalfa-specific expression vectors; second, the resulting constructs are transferred into alfalfa cells, followed by the regeneration of transgenic alfalfa plants. The transgenic population is then grown and harvested at the vegetative state. Finally, recombinant proteins are extracted from harvested leaves and purified, followed by the disposal of residual biomass. A case study illustrates the production in alfalfa of an IgG antibody identical to a monoclonal antibody produced in hybridomas. Strategies to improve antibody recovery and quality are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker H, Bardor M, Molhoff J, Gomord V, Elbers I, Stevens L, Jordi W, Lommen A, Faye L, Lerouge P and Bosch D, 2001. Galactose-extended glycans on antibodies produced by transgenic plants. Proc Nati Acad Sci USA, 27: 2899–2904

    Article  Google Scholar 

  • Boyd PN, Lines AC and Patel AK, 1995. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol, 32: 1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Brown DC and Atanassov A, 1985. Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tiss Org Cult, 4: 111–122

    Article  Google Scholar 

  • Brown DCW, Tian L, Buckley DJ, Lefebvre M, McGrath A and Webb J, 1994. Development of a simple particle bombardment device for gene transfer into plant cells. Plant Cell Tiss Org Cult, 37: 47–53

    Article  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P and Faye L, 1999. N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology, 9: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Conrad U and Fiedler U, 1998. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol, 38: 10 1109

    Google Scholar 

  • Deak M, Kiss GB, Koncz C and Dudits D, 1986. Transformation ofMedicago by Agrobacterium mediated gene transfer. Plant Cell Rep, 5: 97–100

    Article  CAS  Google Scholar 

  • Desgagnés R, Laberge S, Allard G, Khoudi H, Castonguay Y, Lapointe J, Michaud R and Vézina LP, 1995. Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tiss Org Cult, 42: 129–140

    Article  Google Scholar 

  • De Wilde C, De Rycke R, Beeckman T, De Neve M, Van Montagu M, Engler G and Depicker A, 1998. Accumulation pattern of IgG antibodies and Fab fragments in transgenic Arabidopsis thaliana plants. Plant Cell Physiol, 39: 639–646

    Article  PubMed  Google Scholar 

  • During K, Hippe S, Kreuzaler F and Schell J, 1990. Synthesis and self assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol Biol, 15: 281–293

    Article  PubMed  CAS  Google Scholar 

  • Echelard Y, 1996. Recombinant protein production in transgenic animals. Curr Opin Biotech, 7: 536–540

    Article  PubMed  CAS  Google Scholar 

  • Faye L and Chrispeels MJ, 1988. Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconjugate, 5: 245–256

    Article  CAS  Google Scholar 

  • Faye L, Gomord V, Fitchette-Lainé AC and Chrispeels MJ, 1993. Affinity purification of antibodies specific for Asn-linked glycans containing a1,3) —fucose or 13(1,2)-xylose. Anal Biochem, 209: 104–108

    Article  PubMed  CAS  Google Scholar 

  • Fischer R and Emans N, 2000. Molecular farming of pharmaceutical proteins. Transgenic Res, 9: 279–299

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Liao Y-C and Drossard J, 1999. Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Meth, 226: 1–10

    Article  CAS  Google Scholar 

  • Goplen BP, Howarth RE, Sarkar SK and Lesins K,1980, A search for condensed tannins in annual and perennial species of Medicago, Trigonella and Onobrychis. Crop Sci, 20: 801–804

    Google Scholar 

  • Hiatt A, Cafferket R and Bowdish K, 1989. Production of antibodies in transgenic plants. Nature, 342: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Hood, EE and Jilka JM, 1999. Plant-based production of xenogenic proteins. Curr Opinion Biotechnol, 10: 382–386

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA and Bevan MW, 1987. GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Jones WT, Anderson LB and Ross MD, 1973. Bloat in cattle XXIX. Detection of protein precipitant (flavolans) in legumes. New Zeal J Agr Res, 16: 441–446

    Google Scholar 

  • Khoudi H, Laberge S, Ferullo J-M, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R and Vezina L-P, 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng, 64: 135–143

    Article  PubMed  CAS  Google Scholar 

  • Koehler G, and Milstein C, 1975, Continuous culture of fused cells secreting antibody of predefined specificity. Nature, 256: 495–497

    Article  CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL and Howard JA, 1997. Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol Bioeng, 56: 473–484

    Google Scholar 

  • Larrick JW, Yu L, Chen, J, Jaiswal S and Wycoff K, 1998. Production of antibodies in transgenic plants. Res Immunol, 149: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Leite A, Kemper E, da Silva M, Luchessi A, Siloto R, Bonaccorsi E, El-Dorry HF and Arruda P, 2000. Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol Breeding 6: 47–53

    Article  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K and Lehner T, 1995. Generation and assembly of secretory antibodies in plants. Science, 268: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB and Lehner T, 1998. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med, 4: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Matheson SL, Nowak J and Maclean NL, 1990. Selection of regenerative genotypes from highly productive cultivars of alfalfa. Euphytica, 45: 105–112

    Google Scholar 

  • Matsumoto S, Ikura K, Ueda M and Sasaki R, 1995. Characterization of a human glycoprotein (crythropoietin) produced in cultures of tobacco cells. Plant Mol Biol, 27: 1163–1172

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Senaratna T, Bowley SR, Brown DCW, Krochko JE and Bewley JD, 1989. Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol, 25: 1183–1188

    Google Scholar 

  • Michaud D and Yelle S, 2000. Production of useful protease inhibitors in plants. In Recombinant protease inhibitors in plants. Ed. Michaud D. Landes Bioscience, Georgetown, TX, pp 191201

    Google Scholar 

  • Miele L, 1997. Plants as bioreactors for pharmaceuticals: regulatory considerations. Trends Biotechnol, 15: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Nàrvaez-Vàsquez, J, Orozco-Càrdenas, ML and Ryan CA, 1992. Differential expression of a chimeric CaMV-tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol Biol, 20: 1149–1157

    Article  PubMed  Google Scholar 

  • Nowak J, Matheson S, Maclean NL and Havard P, 1992. Regenerative trait and cold hardiness in highly productive cultivars of alfalfa and red clover. Euphytica, 59: 189–196

    Article  Google Scholar 

  • Odell JT, Nagy F and Chua NH, 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313: 810–812

    Article  PubMed  CAS  Google Scholar 

  • Östberg L and Queen C, 1995. Human and humanized monoclonal antibodies: preclinical studies and clinical experience. Biochem Soc Trans, 23: 1038–1043

    PubMed  Google Scholar 

  • Pagny S, Cabanes-Macheteau M, Gillikin JW, Leborgne-Castel N, Lerouge P, Boston RS, Faye

    Google Scholar 

  • L and Gomord V, 2000. Protein recycling from the Golgi to the endoplasmid reticulum is very active in plants but has a minor contribution to calreticulin retention. Plant Cell, 12: 739–755

    Google Scholar 

  • Pen J, 1996, Comparison of host systems for the production of recombinant proteins. In Transgenic plants: a production system for industrial and pharmaceutical proteins. Eds. Owen MRL and Pen J. John Wiley and Sons, London, 149–167

    Google Scholar 

  • Senaratna T, McKersie BD and Rowley SR, 1989. Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos: Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci, 65: 253–260

    Google Scholar 

  • Senaratna T, McKersie BD and Rowley SR, 1990. Artificial seeds of alfalfa (Medicago sativa L.) induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol 26: 85–90

    Google Scholar 

  • Shahin EA, Spielmann A, Sukhapinda K, Simpson RB and Yashar M. 1986. Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci, 26: 1935–1939

    Article  Google Scholar 

  • Skerra A, 1993. Bacterial expression of immunoglobulin fragments. Curr Opin Immunol, 5: 256–262

    Article  PubMed  CAS  Google Scholar 

  • Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb WC, Moore A and Higgins TJV, 1995. A biotechnological approach for improving the nutritive value of alfalfa. J Plant Sci, 73: 2752–2759

    CAS  Google Scholar 

  • Voss A, Nierbach M, Hain R, Hirsch H, Liao Y, Kreurtaler F, Fischer R and Hain R,1995. Reduced virus infectivity in N. tabacum secreting a TMV-specific full size antibody. Mol Breeding 1: 39–50

    Google Scholar 

  • Wallach M, Pillemer G, Yams S, Halabi A, Pugatsch T and Mencher D, 1990. Passive immunization of chickens against Eimeria maxima infection with a monoclonal antibody developed against a gametocyte antigen. Infect Immun, 58: 557–562

    PubMed  CAS  Google Scholar 

  • Wandelt CI, Khan MRI, Craig S, Schoeder HE, Spencer D and Higgins TJV, 1992. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J, 2: 181–192

    PubMed  CAS  Google Scholar 

  • Wright A and Morrison SL, 1997. Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol, 15: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted S, Moench T, Martinell Co M, Paradkar V, Russell D, Queen C, Cone R and Whaley K, 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol, 16: 1361–1364

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Busse, U., Levee, V., Trepanier, S., Vezina, L. (2002). Production of Antibodies in Alfalfa (Medicago Sativa). In: Erickson, L., Yu, WJ., Brandle, J., Rymerson, R. (eds) Molecular Farming of Plants and Animals for Human and Veterinary Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2317-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2317-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6110-2

  • Online ISBN: 978-94-017-2317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics