Skip to main content

Progress towards the Genetic Transformation of Four Tropical Acacia Species: Acacia Mangium, Acacia Crassicarpa, Acacia Mearnsii and Acacia Albida

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 66))

Abstract

The genus Acacia includes about 1100 species, which are mostly shrubs and small trees of the dry savannas and arid regions of Australia, Africa, India and the Americas. Of these, A. mangium, A.crassicarpa, A. mearnsii and A. albida belong to the Leguminosae family the third largest familyof the plant kingdom (Allen & Allen, 1981). A few, such as A. mearnsii, are suited to cool areas both in temperature regions and in tropical highlands whereas a third small group which includes A. mangium and A. crassicarpa, is adaptedto hot and humid conditions.

The authors have equally contributed to the work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahée, J. E. Duhoux, 1994. Root culturing of Faidherbia=Acacia albida as a source of explants for shoot regeneration. Plant Cell, Tiss Org Cult 36: 219–225.

    Google Scholar 

  • Allen, O.N. E.K. Allen, 1981. The Leguminosae. A source book of characteristics, uses and nodulation. University of Wisconsin Press, Madison.

    Google Scholar 

  • Baucher, M., B. Monties, M. Van Montagu W. Boerjan, 1998. Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17: 125–197.

    Article  CAS  Google Scholar 

  • Benfey, P. N. N-H. Chua, 1990. The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science 250: 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, P.N., L. Ren N-H. Chua, 1989. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8: 2195–2202.

    CAS  Google Scholar 

  • Benfey, P.N., L. Ren N-H. Chua, 1990. Combinational and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9: 1685–1696.

    CAS  Google Scholar 

  • Bevan, M., 1984. Binary vectors for transformation. Nucl Acids Res 12: 8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Birch, R.G., 1997. Plant transformation: problems and strategies for practical application. Annu Rev Plant Mol Biol 48: 297–326.

    Article  CAS  Google Scholar 

  • Brasileiro, A-C. M., J-C. Leplé, J. Muzzin, D. Ounnoughi, M-F. Michel L. Jouanin, 1991. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol Biol 17: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Bray, L., V. Lecouturier M. Nicola di Michele,1994. Etude de la sensibilité d’Acacia flava et d’Acacia nilotica iì Agrobacterium tumefaciens p. 459–472. In: J. Dubois Y. Demarly (Eds) Quel avenir pour l’amélioration des plantes? John Libbey Eurotext, Paris.

    Google Scholar 

  • Brewbaker, J.L., 1989. Nitrogen fixing trees. p. 253–262. In: D. Werner P. Müller (Eds), Fast growing trees and nitrogen fixing trees, Gustav Fisher Verlag, Marburg, Germany.

    Google Scholar 

  • Casse, F., C. Boucher, J.S. Julliot, M. Michel J. Dénarié, 1979. Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113: 229–242.

    CAS  Google Scholar 

  • Chevalier, M.H., M. Sogna, A.S. San P. Danthu, 1992. Morphological variability of pods of four Faidherbia albida provenances in Senegal. p. 67–71. In: R.J. Vandenbeldt (Ed). Faidherbia albida in the West African Semi-arid Tropics. Proceedings of a workshop, 22–26 Apr. 1991, Niamey, Niger, p. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics) ICRAF (International Center for Research in Agroforestty) Nairobi, Kenya.

    Google Scholar 

  • Christou, P., 1993. Philosophy and practice of variety-independent gene transfer into recalcitrant crops. In Vitro Cell Dev Biol 29P: 119–124.

    Google Scholar 

  • Christou, P., 1996. Legumes. p. 47–62. In: P. Christou (Ed). Particle bombardment for genetic engineering of plants. Biotechnology intelligence unit. R.G. Landes Company, Academic Press, Inc.

    Google Scholar 

  • Das, P.K., V. Chakravarti S. Maity, 1993. Plantlet formation in tissue culture from cotyledon of Acacia auriculiformis A. Cunn. ex Benth. Indian Journal of Forestry 16: 182–192.

    Google Scholar 

  • De Cleene, M. J. De Ley, 1976. The host range of crown gall. The Botanical Review 42: 389–465.

    Article  Google Scholar 

  • De Greve, M., H. Decraemer, J. Seurinck, M. Van Montagu J. Schell, 1980. The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6. Plasmid 6: 235–248.

    Article  Google Scholar 

  • Duhoux, E. Y.R. Dommergues, 1985. The use of nitrogen-fixing trees in forest and soil restoration in the tropics. p. 384–400. In: H. Ssali S.O. Keya (Eds). Biological nitrogen fixation in Africa. Proceedings of the first Conference of the African Association for Biological Nitrogen Fixation, MIRCEN, Nairobi, Kenya.

    Google Scholar 

  • Duhoux, E., A. Galiana, J. Ahée C. Franche, 1998. Applications des cultures in vitro dans le genre Acacia. p. 237–255. In: C.C. Campa, M. Grignon, M. Gueye S. Hamon (Eds), L’Acacia au Sénégal, Editions de l’ORSTOM, Colloques et Séminaires, Paris.

    Google Scholar 

  • Franche, C., D. Bogusz, C. Schopke, C. Fauquet, C. R.N. Beachy, 1991 Transient gene expression in cassava using high velocity microprojectiles. Plant Mol Biol 17: 493–498.

    Article  PubMed  CAS  Google Scholar 

  • Galiana, A., A. Tibok E. Duhoux, 1991.In vitro propagation of the nitrogen-fixing tree-legume Acacia mangium Wild. Plant Soil 135: 151–159.

    Google Scholar 

  • Guyon, P., M-D Chilton, A. Petit J. Tempé, 1980. Agropine in ‘null-type’ crown gall tumors: evidence for generality of the opine concept. Proc Nati Acad Sci USA 77: 2693–2697.

    Article  CAS  Google Scholar 

  • Hansen, G., A. Das M-D. Chilton, 1994. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91: 7603–7607.

    Article  PubMed  CAS  Google Scholar 

  • Hiei, Y., S. Ohta, T. Komari T. Kumashiro, 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema, A., P.R. Hirsch, P.J.J. Hooykaas R.A. Schilperoort, 1983. A binary plant vector strategy based on separation of vir-and T-region of Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  • Hood, E.E., G.L. Helmer, R.T. Fraley M.D. Chilton, 1986. Hypervirulence of Agrobacterium tumefaciens mediated transformation A281 is encoded in a region of pTiBo 542 outside of T-DNA. J Bacteriol 168: 1291–1301.

    Google Scholar 

  • Hooykaas, P.J.J. A.G.M. Beijersbergen, 1994. The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32: 157–179.

    Article  CAS  Google Scholar 

  • Hunold, R., R. Bronner G. Hahne, 1994. Early events in microprojectile bombardment: cell viability and particle location. Plant J 5: 593–604.

    Article  CAS  Google Scholar 

  • Jefferson, R.A., T.A. Kavanagh M.W. Bevan, 1987. GUS fusion: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.

    CAS  Google Scholar 

  • Jordan, M. C. S.L.A. Hobbs, 1994. The transformation of legumes using Agrobacterium tumefaciens. p. 61–76. In: P.D. Shargool T.T. Ngo (Eds). Biotechnological applications of plant cultures. Current topics on plant molecular biology. CRC Press.

    Google Scholar 

  • Kay, R., A. Chan, M. Daly J. Mc Pherson, 1987. Duplication of CaMV 35S promoter sequences creates strong enhancer for plant genes. Science 236: 1299–1302.

    Article  PubMed  CAS  Google Scholar 

  • Klein, T. M., E.D. Wolf, R. Wu J.C. Sanford, 1987. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73.

    Article  CAS  Google Scholar 

  • Lazo, G.R., P.A. Stein R.A. Ludwig, 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. BiolTechnology 9: 963–967.

    Article  CAS  Google Scholar 

  • Le, Q.V., D. Bogusz, H. Gherbi, A. Lappartient, E. Duhoux C. Franche, 1996. Agrobacterium tumefaciens gene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci 118: 57–69.

    Google Scholar 

  • Murashige, T. F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–442.

    Article  CAS  Google Scholar 

  • National Academy of Sciences U.S.A., 1980. Firewood crops: shrub and tree species for energy production. p. 72–73. US Natl Acad Press, Washington D.C.

    Google Scholar 

  • National Research Council, 1983. Mangium and other fast growing Acacias for the humid tropics. p. 1–53. National Academic Press, Washington D.C.

    Google Scholar 

  • Nitrogen Fixing Tree Highlights, 1985. Acacia mearnsii: mulitpurpose highland legume tree. Nitrogen Fixing Tree Association, Waimanalo, Hawaii.

    Google Scholar 

  • Nitrogen Fixing Tree Highlights, 1987a. Acacia mangium: a fast growing tree for the humid tropics. Nitrogen Fixing Tree Association, Waimanalo, Hawaii.

    Google Scholar 

  • Nitrogen Fixing Tree Highlights, 1987b. Faidherbia albida: the farmers’choice for semi-arid and arid zones. Nitrogen Fixing Tree Association, Waimanalo, Hawaii.

    Google Scholar 

  • Nitsch, J.P. C. Nitsch, 1965. Néoformation de fleurs in vitro chez une espèce de jours courts: Plumbago indica L. Ann Physiol 7: 251–256.

    Google Scholar 

  • Quoirin, M. D.E. Oliveira, 1997. Transient expression of a reporter gene introduced by bioballistic bombardment into Racosperma mangium tissues. Braz J Genet 20: 507–510.

    Article  Google Scholar 

  • Russell, J.A., M.K. Roy J.C. Sanford, 1992. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol 98: 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch T. Maniatis, 1989. Molecular cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbo Laboratory Press, Cold Spring harbor, New York.

    Google Scholar 

  • Sanford, J.C., 1990. Biolistic plant transformation. Physiol Plant 79: 206–209.

    Article  CAS  Google Scholar 

  • Sciaky, D., A.L. Montoya N.W. Chilton, 1978. Fingerprint of Agrobacterium Ti plasmids. Plasmid J 1 238253.

    Google Scholar 

  • Sederoff, R.R., 1995. Forest trees. p. 150–163. In: K. Wang, A. Herrera-Estrella, A. M. Van Montagu (Eds). The transformation of plants and soil microorganisms. Cambridge University Press.

    Google Scholar 

  • Sheen, J., S. Hwang, Y. Niwa, H. Kobayashi D.W. Galbraith, 1995. Green-fluorescent protein as a new vital marker in plant cells. Plant J 8: 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Skolmen, R.G., 1986. Acacia (Acacia koa Gray). p. 375–384. In: Y.P.S. Bajaj (Ed). Biotechnology in Agriculture and Forestry, vol. 1: Trees I. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Stougaard, J., 1995. Agrobacterium rhizogenes as a vector for transforming higher plants-applications in Lotus corniculatus transformation. p. 49–61. In: H. Jones (Ed). Plant gene transfer and expression protocols. Humana Press Inc.

    Google Scholar 

  • Tinker, P.B., 1984. The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soils. Plant Soil 76: 77–91.

    Article  CAS  Google Scholar 

  • Vancanneyt, G., R. Schmidt, A. O’Connor-Sanchez, L. Willmitzer M. Rocha-Sosa, 1990. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220: 245–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quoirin, M. et al. (2000). Progress towards the Genetic Transformation of Four Tropical Acacia Species: Acacia Mangium, Acacia Crassicarpa, Acacia Mearnsii and Acacia Albida . In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2313-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2313-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5427-2

  • Online ISBN: 978-94-017-2313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics