Skip to main content

Structural and Biochemical Aspects of Cold Hardiness in Woody Plants

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 66))

Abstract

Woody plants in temperate climates are exposed to several types of freezing stress including low-temperature extremes, ice encasement, and unseasonal episodes of frost. In response to seasonal changes in growing conditions, plants have evolved the ability to cold acclimate as well as undergo a period of dormancy. Although the primary emphasis of this book is on the molecular biology of woody plants, it is evident that plant structure and biochemical adaptations both play an important role in cold hardiness (Wisniewski and Fuller 1999). In this regard, it is important to keep in mind that cold hardiness in woody plants is a complex trait with several contributing factors. It is also a dynamic process that changes with time. That is to say, the factors that define the level of cold hardiness in mid-winter may be completely different than those that confer cold hardiness in late winter or early spring. This is further complicated by the discovery that in some woody species, different tissues (eg. bark vs. xylem and buds) within the same plant respond very differently when exposed to freezing temperatures (Sakai and Larcher 1987, Wisniewski and Arora 1993). In order to develop logical approaches to alleviating the adverse effect of freezing temperatures on woody plants, a basic understanding of the mechanisms that confer cold hardiness is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.A. and Ashworth, E.N. (1985) Ice nucleation in tomato plants, J. Am. Soc. Hort. Sci. 110, 291–296.

    Google Scholar 

  • Andrews, P.K., Proebsting, E.L., Jr. and Gross, D.C. (1986) Ice nucleation and supercooling in Freeze-sensitive peach and sweet cherry tissues, J. Am. Soc. Hort. Sci. 111, 232–236.

    Google Scholar 

  • Arora, R. and Palta, J.P. (1991) A loss in the plasma membrane ATPase activity and its recovery coincides with incipient freeze-thaw injury and postthaw recovery in onion bulb scale tissue, Plant Physiol. 95, 846–852.

    PubMed  CAS  Google Scholar 

  • Arora, R. and Wisniewski, M.E. (1994) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica). II. A 60-kilodalton bark protein in cold acclimated tissues of peach is heat-stable and related to the dehydrin family of proteins, Plant Physiol. 105, 95–101.

    PubMed  CAS  Google Scholar 

  • Arora, R. and Wisniewski, M.E. (1996) Accumulation of 60-kD dehydrin protein in peach xylem tissues and its relationship to cold acclimation, HortScience 31, 923–925.

    CAS  Google Scholar 

  • Arora, R., Rowland, L.J. and Panta, G.R. (1997), Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions? Physiol Plant. 101, 8–16.

    CAS  Google Scholar 

  • Arora, R., Wisniewski, M.E., and Rowland, L.J. (1996) Cold acclimation and alterations in dehydrin-like and bark storage proteins in the leaves of sibling deciduous and evergreen peach, J. Am. Soc. Hort. Sci. 121, 915–919.

    CAS  Google Scholar 

  • Arora, R., Wisniewski, M.E. and Scorza, R. (1992) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica). I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues, Plant Physiol. 99, 1562–1568.

    PubMed  CAS  Google Scholar 

  • Artlip, T.S., Callahan, A.M., Bassett, C.L. and Wisniewski, M.E. (1997) Seasonal expression of dehydrin gene in sibling deciduous and evergreen peach (Prunus persica L. Batsch), Plant Mol. Biol. 33, 61–70.

    PubMed  CAS  Google Scholar 

  • Artlip, T.S. and Wisniewski, M.E. (1997) Tissue-specific expression of a dehydrin gene in one-year-old `Rio Oso Gem’ peach trees, J. Amer. Soc. Hort. Sci. 122, 784–787.

    Google Scholar 

  • Ashworth, E. N. (1992) Formation and spread of ice in plant tissues, Hort. Rev. 13, 215–255.

    Google Scholar 

  • Ashworth, E. N. (1984) Xylem development in Prunus flower buds and the relationship to deep supercooling, Plant. Physiol. 74, 862–865.

    PubMed  CAS  Google Scholar 

  • Ashworth, E. N. and. Kieft T.L. (1995) Ice nucleation activity associated with plants and fungi, in R.E. Lee, C.J. Warren, and L.V. Gusta (eds), Biological Ice Nucleation and Its Applications, APS Press, St. Paul, MN, pp. 137162.

    Google Scholar 

  • Ashworth, E.N., Davis, G.A. and Wisniewski, M.. (1989) The formation and distribution of ice within dormant and deacclimated peach flower buds, Plant Cell Environ. 15, 521–528.

    Google Scholar 

  • Ashworth, E.N., Rowse, D.J., and. Billmyer, L.A. (1983) The freezing of water in woody tissues of apricot and peach and the relationship of freezing injury, J. Amer. Soc. Hort. Sci. 108, 299–303.

    Google Scholar 

  • Barka, E. Ait, J., Audran, C., Brun, O., Leddet, C. and Dèreuddre, J. (1995) Formation et distribution de glace dans les bourgeons de Vitis vinifera avant et au cours de leur debourrement. Can. J. Bot. 73, 1878–1888.

    Google Scholar 

  • Barnes, S.A., McGrath, R.B., and Chua, N.H. (1997) Light signal transduction in plants, Trends Cell Biol. 7, 21–26.

    PubMed  CAS  Google Scholar 

  • Binnie, S.C., Grossnickle, S.C., and Roberts, D.R. (1994) Fall acclimation patterns of interior spruce seedlings and their relationship to changes in vegetative storage proteins, Tree Physiol. 14, 1107–1120.

    PubMed  CAS  Google Scholar 

  • Burke, M.J. (1986) The glassy state and survival of anhydrous biological systems, in A. C. Leopold (ed), Membranes, Metabolism and Dry Organisms, Cornell Press, Ithaca, N, pp. 358–363.

    Google Scholar 

  • Burke, M. J. and Stushnoff, C. (1979) Frost hardiness: a discussion of possible molecular causes of injury with particular reference to deep supercooling of water, in H. Mussel and R.C. Staples (eds), Stress Physiology of Crop Plants, Wiley-Interscience, NY, pp. 197–215.

    Google Scholar 

  • Burke, M.J., Gusta, L.V., Quamme, H.A, Weiser, C. J. and Li, P.H. (1976) Freezing and injury in plants, Annu. Rev. Plant Physiol. 27, 507–528.

    Google Scholar 

  • Cai, Q., Moore, G.A., and Guy, C.L. (1995) An unusual group 2 LEA gene family in citrus responsive to low temperature, Plant Mol. Biol. 29, 11–23.

    PubMed  CAS  Google Scholar 

  • Campbell, S.A. and Close, T.J. (1997) Dehydrins: genes, proteins, and associations with phenotypic traits, New Phytol. 137, 61–74.

    CAS  Google Scholar 

  • Chen, T.H.H., Burke, M.J. and Gusta, L.V. (1995) Freezing tolerance in plants, in R.E. Lee, C. J. Warren, and L.V. Gusta (eds), Biological Ice Nucleation and Its Applications, APS Press, St. Paul, MN, pp. 115–136.

    Google Scholar 

  • Clack, T., Mathews, S., and Sharrock, R.A. (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE, Plant Mol. Biol. 25, 413–427.

    PubMed  CAS  Google Scholar 

  • Close, T.J. (1996) Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins, Physiol. Plant. 97, 795–803.

    CAS  Google Scholar 

  • Close, T.J. (1997) Dehydrins: A commonalty in the response of plants to dehydration and low temperatures, Physiol. Plant. 100, 291–296.

    CAS  Google Scholar 

  • Close, T.J., Fenton, R.D., and Moonan, F. (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide, Plant Mol. Biol. 23, 279–286.

    PubMed  CAS  Google Scholar 

  • Coleman, G.D. (1997) Seasonal vegetative storage proteins of Populus, in N.B. Klopfenstein, Y.W. Chun, M-S. Kim, and M.R. Ahuja (Eds.), Micropropagation, Genetic Engineering, and Molecular Biology of Populus, USDA Forest Service, Rocky Mountain Forest and Range Ex-periment Station, pp. 124–130.

    Google Scholar 

  • Coleman, G.D., Chen, T.H.H., and Fuchigami, L.H. (1992) Complementary DNA cloning of poplar bark storage protein and control of its expression by photoperiod, Plant Physiol. 98, 687–693.

    PubMed  CAS  Google Scholar 

  • Coleman, G.D., Englert, J.M., Chen, T.H.H., and Fuchigami, L.H. (1993) Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation, Plant Physiol. 102, 53–59.

    PubMed  CAS  Google Scholar 

  • Craker, L.E., Gusta, L.V., and Weiser, C.J. (1969) Soluble proteins and cold hardiness of two woody species, Can. J. Plant Sci. 49, 279–286.

    CAS  Google Scholar 

  • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat, The Plant Cell 10, 623–638.

    PubMed  CAS  Google Scholar 

  • Duman, J. G. (1994) Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara, Biochim. Biophys. Acta 1206, 129–135.

    PubMed  CAS  Google Scholar 

  • Duman, J.G. and Olsen, T.M. (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants, Cryobiology 30, 322–328.

    Google Scholar 

  • Duman, J.G., Wu, D.W., Olsen, T.M., Urrutia, M. and Tursman, D. (1993) Thermal-hysteresis proteins, Adv. Low-Temp. Biol. 2, 131–182.

    Google Scholar 

  • Edgerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. (1997) Temporal expression and ultrastructural localization of dehydrins in Zea mays L., Physiol. Plant. 101, 545–555

    Google Scholar 

  • Fennel, A. and Hoover E. (1991) Photoperiod influences growth, bud dormancy and cold acclimation in Vitis labruscana and V. riparia, J. Amer. Soc. Hort. Sci. 116, 270–273.

    Google Scholar 

  • Franks, F. (1985) Biophysics and Biochemistry at Low Temperatures, Cambridge University Press, London. Fuchigami, L.H., Weiser, C.J., and Evert, D.R. (1971) Induction of cold acclimation in Cornus stolonifera Michx, Plant Physiol 47, 98–103.

    Google Scholar 

  • Fuller, M.P. and Wisniewski, M. (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants, J. Therm. Biol. 23, 81–89.

    Google Scholar 

  • George, M.F., Burke, M.J. and Weiser, C.J. (1974) Supercooling in overwintering azalea flower buds, Plant Physiol. 54, 29–35.

    PubMed  CAS  Google Scholar 

  • Gilmour, S.J., Artus, N. and Thomashow, M.F. (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana, Plant Mol. Biol. 18, 13–21.

    Google Scholar 

  • Gong, Z., Ewart, K. V., Hu, Z., Fletcher, G. L. and Hew, C.L. (1996) Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and prosequences, J. Biol. Chem. 271, 4106–4112.

    PubMed  CAS  Google Scholar 

  • Griffith, M. and Ewart, K.V. (1995) Antifreeze proteins and their potential use in frozen foods, Biotechnol. Adv. 13, 375–402.

    PubMed  CAS  Google Scholar 

  • Griffith, M.P., Ala, D., Yang, S.C., Honand, W.C. and Moffatt, B.A. (1992) Antifreeze protein produced endogeneously in winter rye leaves, Plant Physiol. 100, 593–596.

    PubMed  CAS  Google Scholar 

  • Gross, D.C.,. Proebsting, E. L., Jr. and Andrews, P.K (1984) The effects of ice nucleation-active bacteria on the temperatures of ice nucleation and low temperature susceptibilities of Prunus flower buds at various stages of development, J. Amer. Soc. Hort. Sci. 109, 375–380.

    Google Scholar 

  • Gross, D.C., Proebsting, E.L., Jr. and MacCrindle-Zimmerman, H. (1988) Development, distribution, and characteristics of intrinsic, non-bacterial ice nuclei in Prunus wood, Plant Physiol. 88, 915–922.

    PubMed  CAS  Google Scholar 

  • Guy, C.L., Anderson, J.V., Haskell, D.V., and Li, Q.B. (1994) CAPS, cors, dehydrins, and molecular chaperones; their relationship with low temperature responses in spinach, inJ.H. Cherry (ed.), Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, Springer-Verlag, Berlin, pp. 479.

    Google Scholar 

  • Guy, C.L., Niemi, K.J., and Brambl, R. (1985) Altered gene expression during cold acclimation of spinach, Proc. Nati. Acad. Sci. USA 82, 3673–3677.

    CAS  Google Scholar 

  • Hamman, Jr., R. A., Dami, I.-E., Walsh, T.M. and Stushnoff, C. (1996) Seasonal carbohydrate changes and cold hardiness of Chardonnay and Riesling grapevines, Am. J. Enol. Vitic. 47, 31–36.

    CAS  Google Scholar 

  • Hausladen, A. and Alscher, R. (1994) Purification and characterization of glutathione reductase isozymes specific for the state of cold hardiness of red spruce, Plant Physiol. 105, 205–213.

    PubMed  CAS  Google Scholar 

  • Hellergren, J., Widell, S. and Lundborg, T. (1985) ATPase in relation to freezing injuries in purified plasma membrane vesicles from nonacclimated seedlings of Pinus sylvestris, Acta Hortic. 168, 161–166.

    Google Scholar 

  • Hew, C.H. and Yang, D.S.C. (1992) Protein interaction with ice, Eur. J. Biochem. 203, 33–42.

    Google Scholar 

  • Hirano, S.S., Baker, L.S. and Upper, C.D. (1985) Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury, Plant Physiol. 77, 259–265.

    PubMed  CAS  Google Scholar 

  • Hirsh, A.G., Williams, R. J., and Meryman, H.T. (1985) A novel method of natural cryopreservation: Intracellular glass formation in deeply frozen Populus, Plant Physiol. 79, 41–56.

    PubMed  CAS  Google Scholar 

  • Hon, W.C., Griffith, M., Mlynarz, A., Kwok, Y C. and Yang, D.S.C. (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins, Plant Physiol. 109, 879–889.

    PubMed  CAS  Google Scholar 

  • Hon, W.C., Griffith, M., Chong, P. and Yang, D.S.C. (1994) Extraction and isolation of antifreeze proteins from winter rye leaves, Plant Physiol. 104, 971–980.

    PubMed  CAS  Google Scholar 

  • Hong, S.G., Sucoff, E. and Lee-Stadelman, O.Y. (1980) Effects of freezing deep supercooled water on the viability of ray cells, Bot. Gaz. 141, 464–469.

    Google Scholar 

  • Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.

    PubMed  CAS  Google Scholar 

  • Iswari, S. and Palta, J.P. (1989) Plasma membrane ATPase activity following reversible and irreversible freezing injury, Plant Physiol. 90, 1088.

    PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance, Science 280, 104–106.

    CAS  Google Scholar 

  • Junttila, O (1976) Apical growth cessation and shoot tip abscission in Salix, Physiol. Plant. 38 278–286.

    Google Scholar 

  • Junttila, O (1990) Gibberellins and the regulation of shoot elongation in woody plants, in N. Takahashi, B O Phinney, and J. MacMillan (eds.), Gibberellins,Springer-Verlag, Berlin, pp. 199–210.

    Google Scholar 

  • Kang, S-M. and Titus, J.S. (1987) Specific proteins may determine maximum cold resistance in apple shoots, J. Hort. Sci. 62, 281–285.

    CAS  Google Scholar 

  • Kuroda, H., Sagisaka, S., and Chiba, K. (1990g) Frost induces cold acclimation and peroxide-scavenging systems coupled with the pentose-phosphate cycle in apple twigs under natural conditions, J. Japan Soc. Hort. Sci. 59 409416.

    Google Scholar 

  • Kuroda, H., Sagisaka, S., and Chiba, K. (1990b) Seasonal changes in peroxide-scavenging systems of apple trees in relation to cold hardiness, J. Japan Soc. Hort. Sci. 59, 399–408.

    Google Scholar 

  • Langheinrich, U. and Tischner, R. (1991) Vegetative storage proteins in poplar induction and characterization of a 32-and a 36-kilodalton polypeptide, Plant Physiol. 97, 1017–1025.

    PubMed  CAS  Google Scholar 

  • Levitt, J. (1980) Responses of Plants to Environmental Stresses, New York, Academic Press.

    Google Scholar 

  • Lin, C. and Thomashow, M.F. (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity, Biochem. Biophys. Res. Commun. 183, 1103–1108.

    PubMed  CAS  Google Scholar 

  • Lindow, S.E. (1995) Control of epiphytic ice nucleation-active bacteria for management of plant frost injury. in R.E. Lee, C.J. Warren, and L.V. Gusts (eds), Biological Ice Nucleation and Its Applications, APS Press, St. Paul, MN, pp. 239–256.

    Google Scholar 

  • Lindow, S.E. (1983) The role of bacterial ice nucleation in frost injury to plants, Ann. Rev. Phytopathology, 21, 363–384.

    Google Scholar 

  • Lindow, S.E. (1982) Population dynamics of epiphytic ice nucleation-active bacteria on frost sensitive plants and frost control by means of antagonistic bacteria, in P.H. Li and A. Sakai, (eds), Plant Cold Hardiness, Academic Press, NY, pp. 395–410.

    Google Scholar 

  • Lindow, S. E., Amy, D.C. and Upper, C.D. (1978) Distribution of ice nucleation-active bacteria on plants in nature, Applied Env. Microbiol. 36, 831–838.

    CAS  Google Scholar 

  • Mattheis, J.P. and Ketchie, D.O. (1990) Changes in parameters of plasmalemma ATPase during cold acclimation of apple tree bark tissues, Physiol. Plant. 78, 616–622.

    CAS  Google Scholar 

  • Muthalif, M.M. and Rowland, L.J. (1994) Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium section Cyanococcus), Plant Physiol. 104, 1439–1447.

    PubMed  CAS  Google Scholar 

  • Neven, L.G., Haskell, D.W., Hofig, A., Li, Q-B. and Guy, C.L. (1993) Characterization of a spinach gene responsive to low temperature and water stress, Plant Mol. Biol. 21, 291–305.

    PubMed  CAS  Google Scholar 

  • Nitsch, J.P. (1957) Growth responses of woody plants to photoperiodic stimuli, Proc. Amer. Soc. Hort. Sci. 70, 512–525.

    Google Scholar 

  • Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martinussen, I., Olsson, O., Sandberg, G., and Moritz, T. (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization, The Plant Journal 12, 1339–1350.

    CAS  Google Scholar 

  • Palva. T and Heino, P. (1998). Molecular mechanism of plant cold acclimation and freezing tolerance, in P.H. Li and T.H.H. Chen (eds.), Plant Cold Hardiness: Molecular Biology, Biochemistry, and Physiology, Plenum Press, New York, pp. 3–14.

    Google Scholar 

  • Parody-Morreale, A., Murphy, K.P., Di Cera, E., Fall, R., De Vries, A.L. and Gill, S.J. (1988) Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins, Nature 33, 782–783.

    Google Scholar 

  • Pihakaski-Maunsbach, K., Griffith, M., Antikainen, M. and Maunsbach, A.B. (1996) Immunogold localization of glucanase-like antifreeze protein in cold acclimated winter rye, Protoplasma 191, 115–125.

    CAS  Google Scholar 

  • Pomeroy, M.K., Siminovitch, D., and Wightman, F. (1970) Seasonal biochemical changes in the living bark and needles of red pine in relation to adaptation to freezing, Can. J. Bot. 48, 953–967.

    CAS  Google Scholar 

  • Quail, P.H. (1994) Phytochrome genes and their expression, in R.E. Kendrick, and G.H.M. Kronenberg (eds.), Photomorphogenesis in Plants, 2nd Edn., Kluwer Academic Press, Amsterdam, pp. 71–103.

    Google Scholar 

  • Quamme, H.A. (1995) Deep supercooling in buds of woody plants. In: Biological Ice Nucleation and Its Applications, in R.E. Lee, C.J. Warren, and L.V. Gusta (eds), Biological Ice Nucleation and Its Applications, APS Press, St. Paul, MN, pp. 183–200.

    Google Scholar 

  • Quamme, H.A. (1986) Use of thermal analysis to measure freezing resistance of grape buds, Can. J. Plant Sci. 66, 945–952.

    Google Scholar 

  • Quamme, H.A. (1978) Mechanism of supercooling in overwintering peach flower buds, J. Amer. Soc. Hort. Sci. 103, 57–61.

    Google Scholar 

  • Quamme, H.A., Stushnoff, C. and Weiser, C.J. (1972) The relationship of exotherms to cold injury in apple stem tissue, J. Amer. Soc. Hort. Sci. 97, 608–611.

    Google Scholar 

  • Rinne, P., Welling, A., and Kaikuranta, P. (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype, Plant, Cell and Environ. 21, 601–611.

    CAS  Google Scholar 

  • Rowland, L.J. and Arora, R. (1997) Proteins related to endodormancy (rest) in woody perennials, Plant Science 126, 119–144.

    CAS  Google Scholar 

  • Rowland, L.J., Mubarack, M., Levi, A., and Arora, R. (1996) Cloning and expression of dehydrin genes in blueberry, HortScience 31, 585.

    Google Scholar 

  • Sakai, A. (1979) Freezing avoidance mechanism of primordial shoots of conifer buds, Plant Cell Physiol. 20, 13811386.

    Google Scholar 

  • Sakai, A. and Larcher, W. (1987) Frost Survival of Plants, Spring-Verlag, Berlin. 321 pp.

    Google Scholar 

  • Salzman, R.A., Bressan, R.A., Hasegawa, P.M., Ashworth, E.N. and Bordelon, B.P. (1996) Programmed accumulation of LEA-like proteins during desiccation and cold acclimation of overwintering grape buds, Plant, Cell and Environment 19, 713–720.

    CAS  Google Scholar 

  • Siminovitch, D. and Briggs, D.R. (1949) The chemistry of the living bark of the black locust tree in relation to frost hardiness, I. Seasonal variations in protein content, Arch Biochem. 23, 8–17.

    PubMed  CAS  Google Scholar 

  • Siminovitch, D., Rheume, B., Pomeroy, K., and Lepage, M. (1968) Phospholipid, protein and nucleic acid increases in protoplasm and membrane structures associated with development of extreme freezing resistance in black locust tree cells, Cryobiology 5, 202–225.

    Google Scholar 

  • Smith, H. (1995) Physiological and ecological function within the phytochrome family, Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 289–315.

    CAS  Google Scholar 

  • Stepien, V., Sauter, J.J. and Martin, F. 1994. Vegetative storage proteins in woody plants, Plant Physiol. Biochem. 32: 1–8.

    Google Scholar 

  • Sutinen, M.L., Rybarczyk, S.J. and Palta, J.P. (1990) Simultaneous changes in the plasma membrane polar lipid fatty acid composition and the vanadate sensitive ATPase activity during cold acclimation of pine needles, Plant Physiol. 93, 85.

    Google Scholar 

  • Titus, J.S. and Kang, S-M. (1982) Nitrogen metabolism, translocation and recycling in apple trees, Hort. Rev. 4, 204–246.

    CAS  Google Scholar 

  • Thomashow, M.F., Stockinher, E.J., and Gilmour, S.J. (1998) Regulation of plant gene expression in response to low temperature, in P.H. Li and T.H.H. Chen (eds.), Plant Cold Hardiness: Molecular Biology, Biochemistry, and Physiology, Plenum Press, New York, pp. 29–34.

    Google Scholar 

  • Uemura, M. and Yoshida, S. (1986) Studies on freezing injury in plant cells: II. Protein and lipid changes in the plasma membrane of Jerusalem Artichoke tubers during a lethal freezing in vivo, Plant Physiol. 80, 187–195.

    PubMed  CAS  Google Scholar 

  • Uemura, M. and Steponkus, P.L. (1989) Parallel effects of freezing and osmotic stress on the ATPase activity and protein composition of the plasma membrane of winter rye seedlings, Plant Physiol. 91, 961–969.

    PubMed  CAS  Google Scholar 

  • Valerio, P.F., Kao, M.H. and Fletcher, G.L. (1992) Fish skin: An effective barrier to ice crystal propagation, J. Exp. Biol. 164, 135–151.

    Google Scholar 

  • Warren, G. J. (1995) Identification and analysis of ina genes and proteins. in R.E. Lee Jr., C.J. Warren and L.V. Gusta (eds.), Biological Ice Nucleation and Its Applications, APS Press, St. Paul, Minn., pp. 163–181.

    Google Scholar 

  • Wisniewski, M (1995) Deep supercooling in woody plants and the role of cell wall structure, in R.E. Lee Jr., C.J. Warren and L.V. Gusta (eds.), Biological Ice Nucleation and Its Applications,APS Press, St. Paul, Minn., pp. 163181.

    Google Scholar 

  • Wisniewski, M. and Arora, R. (1993) Adaptation and response of fruit trees to freezing temperatures, in. A.R. Biggs (ed), Cytology, Histology, and Histochemistry of Fruit Tree Diseases, CRC Press, Boca Raton, FL, pp. 299–320.

    Google Scholar 

  • Wisniewski, M., and Davis, G. (1995) Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling, Trees 9, 253–260.

    Google Scholar 

  • Wisniewski, M. and Davis, G. (1989) Evidence for the involvement of a specific cell wall layer in the regulation of deep supercooling of xylem parenchyma, Plant Physiol. 139, 105–116.

    Google Scholar 

  • Wisniewski, M. and Fuller, M. (1999) Ice nucleation and deep supercooling: New insights using infrared thermography, in R. Margesin and F. Schinner (eds), Cold-Adapted Organisms: Ecology, Physiology, Enzymology and Molecular Biology, Springer Verlag, Berlin Heidelberg. 416 pp.

    Google Scholar 

  • Wisniewski, M. and Ashworth, E.N. (1986) A comparison of seasonal ultrastructural changes in stem tissues of peach that exhibit contrasting mechanisms of cold acclimation, Bot. Gaz. 147, 407–417.

    Google Scholar 

  • Wisniewski, M., Webb, R., Balsamo, R., Close, T., Yu, X-M., and Griffith, M. (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica L. Batsch), Physiol. Plant. 105, 600–608.

    CAS  Google Scholar 

  • Wisniewski, M.E., Webb, R., and Fuchigami, L. 1998. Distribution of seasonally expressed storage proteins in different-aged shoots and roots of ‘Loring peach’. HortScience 33: 455.

    Google Scholar 

  • Wisniewski, M., Lindow, S.E. and Ashworth, E.N. (1997) Observations of ice nucleation and propagation in plants using infrared video thermography, Plant Physiol. 113, 327–334.

    PubMed  CAS  Google Scholar 

  • Wisniewski, M.E., Close, T.J., Artlip, T. and Arora, R. (1996) Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants, Physiol. Plant. 96, 496–505.

    CAS  Google Scholar 

  • Wisniewski, M., Close, T.J., Artlip, T. and. Arora, R. (1994) Seasonal patterns of dehydrins and 70 kDa heat-shock proteins in bark tissues of eight species of woody plants, Physiol. Plant. 96, 496–505.

    Google Scholar 

  • Wisniewski, M., Davis, G. and Arora, R. (199la) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach, Plant Physiol. 139, 1354–1359.

    Google Scholar 

  • Wisniewski, M., Davis, G. and Schaffer, K. (1991b) Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure, Planta. 184, 254–260.

    CAS  Google Scholar 

  • Wolf, T K. and Pool, R.M. (1987) Factors affecting exotherm detection in the differential thermal analysis of grapevine dormant buds, J. Amer. Soc. Hort. Sci. 112, 520–525.

    Google Scholar 

  • Yoshida, S. (1984) Chemical and biophysical changes in the plasma membrane during cold acclimation of mulberry bark cells, Plant Physiol. 76, 257–265.

    PubMed  CAS  Google Scholar 

  • Yoshida, S. (1986) Reverse changes in plasma membrane properties upon deacclimation of mulberry trees, Plant Cell Physiol. 27, 83–89.

    CAS  Google Scholar 

  • Yoshida, S. and Uemura, M. (1990) Responses of the plasma membrane to cold acclimation and freezing stress, in C.Larsson and I.M. Moller (eds.), The Plant Plasma Membrane, Springer-Verlag, Berlin Heidelberg, pp. 293–319.

    Google Scholar 

  • Zamecnik, J. and Janacek, J. (1992) Interaction antifreeze proteins from cold hardened cereals with ice nucleationactive bacteria, Cryobiology 29, 718–719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wisniewski, M., Arora, R. (2000). Structural and Biochemical Aspects of Cold Hardiness in Woody Plants. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2313-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2313-8_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5427-2

  • Online ISBN: 978-94-017-2313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics