Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 66))

  • 347 Accesses

Abstract

In their book chapter on Malus, Way et al. (1991) included a quote by prize winning apple artist Roseanne Sanders (Sanders, 1988) who wrote ‘From the garden of Eden to the Big Apple, from William Tell to Johnny Appleseed, to Paris of Troy who gave the troublesome golden apple to Aphrodite which started the Trojan War, the apple has occupied a very special place in our affections both as a symbol and as one of the simplest and most delicious of Nature’s gifts’. In this chapter, I will discuss briefly the history of apple, problems of commercial apple cultivars, conventional breeding solutions to apple problems, and then will focus on apple transformation, with an emphasis on strategies to improve the efficiency of Agrobacterium-mediated transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, S. (1992) Antisense oligonucleotides as antiviral agents. Trends in Bio Technol. 10, 152–158.

    CAS  Google Scholar 

  • Akama, K., Shiraishi, K., Ohta, S., Nakamura, K., Okada, K., and Shimura, Y. (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes andAgrobacterium strains. Plant Cell Rep. 12, 7–11.

    CAS  Google Scholar 

  • Alston, F.H. (1981) Breeding high quality high yielding apples. in P.W. Goodenough and R.K. Aitkin (eds.), Quality in Stored and Processed Vegetables and Fruit, Academic Press, London, pp. 93–102.

    Google Scholar 

  • Alt-Morbe, J., Kuhlmann, H., and Schroder, J. (1989) Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. Mol. Plant-Microbe Inter, 301–308.

    Google Scholar 

  • Ankenbauer, R.G. and Nester, E.W. (1990) Sugar-mediated induction of Agrobacterium tumefaciens

    Google Scholar 

  • virulence genes: structural specificity and activities of monosaccharides. J. Bacteriol.172, 6442–6446.

    Google Scholar 

  • Ballard, J.K., Proebsting, E.L., Tukey, R.B., and Mills, H. (1971) Critical temperatures for blossom buds. Wash. StateAgr. Ext. Circ. 369–374.

    Google Scholar 

  • Barrett, C. and Cassells, A.C. (1994) An evaluation of antibiotics for the elimination of Xanthomonas campestris pv. pelargonii (Brown) limn Pelargonium x domesticum cv. Grand Slam explants in vitro. Plant Cell Tissue Organ Cult. 36, 169–175.

    CAS  Google Scholar 

  • Beachy, R.N., Loesch-Fries, S., and Turner, N.E. (1990) Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28, 451–474.

    CAS  Google Scholar 

  • Belaizi, M., Paul, H., Sangwan, R.S., and Sangwan-Norreel, B.S. (1991) Direct organogenesis from intemodal segments of in vitro grown shoots of apple cv. Golden Delicious. Plant Cell Rep. 9, 471–474.

    Google Scholar 

  • Sidney, D., Scelonge, Ch., Martich, J., Burrus, M., Sims, L, and Huffman, G. (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens.Plant Mol. Biot. 18, 301–313.

    Google Scholar 

  • Bolar, J.P., Brown, S.K., Norelli, J.L., and Aldwinckle, H.S. (1999a) Factors affecting the transformation of ‘Marshall McIntosh’ apple by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 54, (In press)

    Google Scholar 

  • Bolar, J.P., Norelli, J.L., Harman, G.E., Brown, S.K., and Aldwinckle, H.S. (1999b) Expression of fungal chitinolytic enzymes in transgenic apples confers high levels of resistance to scab, in A. Altman, S. Izhar, and M. Ziv (eds.), Plant Biotechnology and In Vitro Biology in the 21’ t Century, Kluwer Academic Publishers, Dordrecht. ( In press )

    Google Scholar 

  • Bolton, G.W., Nester, E.W., and Gordon, M.P. (1986) Plant phenolic compounds induce expression of Agrobacterium tumefaciens loci needed for virulence. Science 232, 983–985.

    PubMed  CAS  Google Scholar 

  • Briggs, J.B. and Alston, F.H. (1969) Sources of pest resistance in apple cultivars. Rep. E. Mailing Res. Stn. for 1968: 159–162.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J., and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctoma solani. Science 254, 1194–1197.

    CAS  Google Scholar 

  • Brown, A.G. (1975) Apples, in J. Janick and J.N. Moore (eds.), Advances in Fruit Breeding, Purdue Univ. Press, West Lafayette, IN, pp. 3–37.

    Google Scholar 

  • Brown, S.K. (1992) Genetics of apple. Plant Breed. Rev. 9, 333–366.

    Google Scholar 

  • Carmona, J.J., Molina, A., Fernandez, J.A., Lopez-Fando, J.J., and Garcia-Olmedo, F. (1993) Expression of the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 3, 457–462.

    PubMed  CAS  Google Scholar 

  • Cheng, F.S., Weeden, N.F., and Brown, S.K. (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin colar. Theor. Appl. Genet. 93, 222–227.

    CAS  Google Scholar 

  • Cheng, F.S., Weeden, N.F., Brown, S.K., Aldwinckle, H.S., Gardiner, S.E., and Bus, V.G. (1998) Development of a DNA marker for V, a gene conferring resistance to apple scab. Genome 41, 208–214.

    CAS  Google Scholar 

  • Chyi, Y-S. And Phillips, G.C. (1987) High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6, 105–108.

    CAS  Google Scholar 

  • Connor, P.J., Brown, S.K., and Weeden, N.F. (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Amer. Soc. Hort. Sci. 122, 350–359.

    Google Scholar 

  • Crane, M.B. (1953) The genetics and breeding of tree fruits. Rep. Intl. Hort. Cong., Int. Soc. Hort., London, pp. 687–695.

    Google Scholar 

  • Dandekar, A. (1992) Transformation, in F.A. Hammerschlag and R.E. Litz (eds.), Biotechnology of Perennial Fruit Crops, CAB International, Wallinford, pp. 141–168.

    Google Scholar 

  • Dandekar, A., Uratsu, S.L., and Matsuta, N. (1990) Factors influencing virulence in Agrobacteriummediated transformation of apple. Acta Hort. 280, 483–494.

    Google Scholar 

  • Dandekar, A., McGranahan, G.H., and James, D.J. (1993) Transgenic woody plants. in Transgenic Plants, Vol. 2, Academic Press, London, pp. 129–151.

    Google Scholar 

  • Dayton, D.F. (1959) Red color distribution in apple skin. Proc. Amer. Soc. Hort. Sci. 74, 72–81.

    Google Scholar 

  • De Bondt, A., Eggermont, K., Druart, P., De Vil, M., Goderis, I., Vanderleyden, J., and Broekaert, W.F. (1994)Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep. 13, 587–593.

    Google Scholar 

  • De Bondt, A., Eggermont, K., Penninckx, I., Goderis, I., and Broekaert, W.F. (1996) Agrobacteriummediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep. 15, 549–554.

    Google Scholar 

  • Doerr, B.I., Glomot, R., Kief, H., Kramer, M., and Sakaguchi, T. (1980) Toxicology of cefotaxime in comparison to other cephalosporins. J. Antimicrob. Chemother. 6, 79–82.

    PubMed  CAS  Google Scholar 

  • Donson, J., Keamey, C.M., Turpen, T.H., Khan, I.A., Kurath, G., Turpen, A.M., Jones, G.E., Dawson, W.O., and Lewandowski, D.J. (1993) Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene. Mol. Plant-Microbe Interactions 6, 635–642.

    CAS  Google Scholar 

  • During, K., Porsch, P., Fladung, M., and Lorz, H. (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia amylovora. Plant J. 3, 587–598..

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (1998) Production Yearbook for 1997. FAO, Rome. Fasolo, F., Zimmerman, R.H., and Fordham I (1989) Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars. Plant Cell Tissue Organ Cult. 16, 75–87.

    Google Scholar 

  • Forsline, P.L. (1983) Winter hardiness of common New York apple varieties. Proc. N.Y. State Hort. Soc. 128, 20–42.

    Google Scholar 

  • Gallagher, S.R. (ed.) (1992) GUS Protocol: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, New York.

    Google Scholar 

  • Gebhardt, S.E., Cutrufelli, R., and Matthews. R.H. (1982) Composition of foods…Fruits and fruit juices. U.S. Dept. Agr., Agr. Handbook 8–9 (rev), Washington, DC.

    Google Scholar 

  • Gercheva, P., Zimmerman, R.H., Owens, L.D., Berry, C., and Hammerschlag, F.A. (1994) Particle bombardment of apple leaf explants influences adventitious shoot formation. HortScience 29, 1536–1538.

    Google Scholar 

  • Gmitter, F.G. Grosser, J.W., and Moore, G.A. (1992) Citrus, in F.A. Hammerschlag and R.E. Litz (eds.), Biotechnology ofPerennial Fruit Crops, CAB Intl., Wallinford, pp. 335–369.

    Google Scholar 

  • Golemboski, D.B., Lomonossoff, G.P., and Zaitlin, M. (1990) Plants transformed with a tobacco mosaic virus non-structural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87, 6311–6315.

    PubMed  CAS  Google Scholar 

  • Gray, J., Picton, S., Shabbeer, J., Schuch, W., and Grierson, D. (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol. 19, 69–87.

    PubMed  CAS  Google Scholar 

  • Hammerschlag, F.A. and Smigocki, A.C. (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain ofAgrobacterium tumefaciens. HortScience 33, 897–899.

    Google Scholar 

  • Hammerschlag, F.A., Zimmerman, R.H., Yadava, U.L., Hunsucker, S., and Gercheva, P. (1997) Effect of antibiotics and exposure to an acidified medium on the elimination of Agrobacterium tumefaciens from apple leaf explants and on shoot regeneration. J. Amer. Soc. Hort. Sci. 122, 758–763.

    CAS  Google Scholar 

  • Haseloff, J., and Amos, B. (1995) GFP in plants. Trends Genet. 11, 328–329.

    PubMed  CAS  Google Scholar 

  • Haseloff, Jl, Siemering, K.R., Prasher, D.C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122–2127.

    PubMed  CAS  Google Scholar 

  • Hassan, M., Sinden, S.S., Kobayashi, R.S., Nordeen, R.O., and Owens, L.D. (1993) Transformation of potato (Solanum tuberosum) with a gene for an anti-bacterial protein, cecropin. Acta Hort. 336, 127–131.

    Google Scholar 

  • Hemmat, M., Weeden, N.F., and Brown, S.K. (1995) Molecular markers for the scab resistance (Vf) region in apple. HortScience 30, 850.

    Google Scholar 

  • Hemmat, M., Weeden, N.F., Aldwinckle, H.S., and Brown, S.K. (1998) Molecular markers for the scab resistance (V1) region in apple. HortScience 123, 992–996.

    CAS  Google Scholar 

  • Hemmat, M., Weeden, N.F., Conner, P.J., and Brown, S.K. (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J. Amer. Soc. flort. Sci. 122. 347–349.

    CAS  Google Scholar 

  • Hightower, R., Baden, C., Penzes, E., Lund, P., and Dunsmuir, P. (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol. Biol. 17, 1013–1021.

    PubMed  CAS  Google Scholar 

  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179–180.

    CAS  Google Scholar 

  • Hokanson, S.C., McFerson, J.R., Forsline, P.L., Lamboy, W.F., Luby, J.J., Djangaliev, A.D., and Aldwinckle, H.S. (1997) Collecting and managing wild Malus gennplasm in its center of diversity. HortScience 32, 173–176.

    Google Scholar 

  • Holefors, A., Zhongtian, X., and Welander, M. (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci. 136, 69–78.

    CAS  Google Scholar 

  • Hood, E.E., Helmer, G.C., Fraley, R.T., and Chilton, M.D. (1986) The hypovirulence ofAgrobacterium tumefaciens A281 is encoded in the region of pTiBo542 outside the T-DNA. J. Bacteriol. 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  • Howe, G.H. and Robinson, W.B. (1946) Ascorbic acid content of apple varieties and seedlings at Geneva, N.Y., in 1944–1945. Proc. Amer. Soc. Hort. Sci. 48, 133–136.

    CAS  Google Scholar 

  • Hu, E.-Y., Chee, P.P., Chesney, R.H., Zhou, J.H., Miller, P.D., and O’Brien, W.T. (1990) GUS-like activities in seed plants. Plant Cell Rep. 9, 1–5.

    CAS  Google Scholar 

  • Hu, W. and Cheng, C: L. (1995) Expression ofAeguorea green fluorescent protein in plants cells. FEBS Lett. 369, 331–334.

    Google Scholar 

  • Huang, Y., Nordeen, R.O., Di, M., Owens, L.D., and McBeath, J.H. (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Mol. Plant PathoL 87, 494–499.

    CAS  Google Scholar 

  • Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998) Arabidopsis CBFI overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106.

    PubMed  CAS  Google Scholar 

  • James, D.J. (1991) Agrobacterium-mediated transformation of apple (Malus pumila Mill.), in M.R. Abuja, (ed.), Woody Plant Biotechnology, Plenum Press, New York, pp. 213–226.

    Google Scholar 

  • James, D.J. and Dandekar, AM. (1991) Regeneration and transformation of apple (Malus pumila Mill.), in K. Lindsey (ed.), Plant Tissue Culture Manual: Fundamentals and Application. Vol. B Kluwer Academic Publishers, Dordrecht, pp. 1–18.

    Google Scholar 

  • James, D.J., Passey, A.J. and Barbara, D.J. (1990) Regeneration and transformation of apple and strawberry using disarmed Ti-binary vectors. Acta Hort. 280, 495–502.

    Google Scholar 

  • James, D.J., Passey, A.J., and Malhotra, S.B. (1984) Organogenesis in callus derived from stem and leaf tissues of apple and cherry rootstocks. Plant Cell Tissue Organ Cult. 3, 333–341.

    CAS  Google Scholar 

  • James, D.J., Passey, A.J., and Rugini, E. (1988a) Factors affecting high frequency plant regeneration from apple leaf tissues cultured in vitro. J. PlantPhysiol. 132, 148–154.

    CAS  Google Scholar 

  • James, D.J., Passey, A.J., Baker, S.A., and Wilson, F.M. (1996) Transgenes display stable patterns of expression in apple fruit and Mendelian segregation in the progeny. Bio/Technology 14, 56–60.

    CAS  Google Scholar 

  • James, D.J., Passey, Ai., Barbara, D.J. and Bevan, M. (1989). Genetic transformation of apple (Malus pumila Mill.) using a disarmed Ti-binary vector. Plant Cell Rep. 7, 658–661.

    CAS  Google Scholar 

  • James, D.J., Passey, A.J., Predieri, S., and Rugini, E. (1988b) Regeneration and transformation of apple plants using wild-type and engineered plasmids in Agrobacterium spp., in M.R. Ahuja (ed.), Somatic Cell Genetics of Woody Plants, Kluwer Academic Publishers, The Hague, pp. 65–71.

    Google Scholar 

  • James, D.J., Uratsu, S., Cheng, J., Negri, P., Viss, P., and Dandekar, AM. (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep. 12, 559–563.

    CAS  Google Scholar 

  • Janick,J., Emerson, F.H., Pecknold, P.C., Korban, S.S., and Dayton, D.F. (1988) ‘Williams Pride’ apple. HortScience 23, 928–930.

    Google Scholar 

  • Jaynes, J.M., Nagpala, P., Destefano-Beltran, L., Hong Huang, J., Kin, J. Denny, T. and Cetiner, S. (1993) Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci. 89, 43–53.

    CAS  Google Scholar 

  • Jefferson, RA, Kavanagh, T.A., and Bevan, M.W. (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jin, S., Komari, T., Gordon, M.P., and Nester, E.W. (1987) Genes responsible for the supervirulence phenotype ofAgrobacterium tumefaciens A281. J. Bacteriol. 169, 4417–4425.

    PubMed  CAS  Google Scholar 

  • Jones, AL. and Aldwinckle, H.S. (1990) Compendium of Apple and Pear Diseases. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  • Jones, J.D.G., Dean, C. Gidoni, D., Gilbert, D., Bond-Nutter, D., Lee, Bedbrook, J., and Dunsmuir, P. (1988) Expression of bacterial chitinase protein in tobacco leaves using two photosynthetic gene promoters. Mol. Gen. Genet. 212, 536–542.

    CAS  Google Scholar 

  • Kitts, P., Adams, M., Kondepudi, A, Gallagher, C., and Kain, S. (1995) Green fluorescent protein (GFP): a novel reporter for monitoring gene expression in living cells and organisms. Clontechniques 10, 1–3.

    Google Scholar 

  • Ko, K., Brown, S.K., Norelli, J.L., and Aldwinckle, H.S. (1998a) Alterations in nptIl and gus expression

    Google Scholar 

  • following micropropagation of transgenic M.7 apple rootstock lines. J. Amer. Soc. Hort. Sci. 123, 11–18.

    Google Scholar 

  • Ko, K., Grethel, A, Timur Momol, M., Norelli, J.L., and Aldwinckle, H.S. (1998b) Enhanced resistance to fire blight (Erwinia amylovora) of Gala apple lines transgenic for lytic protein genes. Abstr. Intl. Cong. Plant Cell Tissue Culture 9, 127.

    Google Scholar 

  • Korban, S.S. (1986) Interspecific hybridization in Malus. HortScience 21, 41–48.

    Google Scholar 

  • Korban, S.S. and Chen, H. (1992) Apple, in F.A. Hammerschlag and R.E. Litz (eds.), Biotechnology of Perennial Fruit Crops, CAB, Wallingford, pp. 203–227.

    Google Scholar 

  • Korban, S.S. and O’Connor, P.A. (1990) Disease resistant apple cultivars developed from the apple breeding program at the University of Illinois. Illinois Agri. Exper. Stat. Bull, no. 790.

    Google Scholar 

  • Korban, S.S. and Skirvin, R.M. (1984) Nomenclature of the cultivated apple. HortScience 19, 177–180.

    Google Scholar 

  • Korban, S.S., O’Connor, P.A, and Elobeidy, A (1992) Effects of thidiazuron, naphthaleneacetic acid, dark incubation and genotype on shoot organogenesis from Malus leaves. J. Hort. Sci. 67, 341–349.

    CAS  Google Scholar 

  • Kosugi, S., Ohashi, Y., Nakajima, K., and Arai, Y. (1990) An improved assay for p-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous ß-glucuronidase activity. Plant Sci. 70, 133–140.

    CAS  Google Scholar 

  • Lamb, R.C. (1974) Future gennplasm resources of pome fruits. Fruit Var. J. 28, 75–79.

    Google Scholar 

  • Lambert, C. and Tepfer, D. (1991) Use ofAgrobacterium rhizogenes to create chimeric apple trees through genetic grafting. Bio/Technology 9, 80–83.

    Google Scholar 

  • Lambert, C. and Tepfer, D. (1992) Use ofAgrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85, 105–109.

    CAS  Google Scholar 

  • Lapins, K. (1969) Separation of compact growth types in certain apple seedlings progenies. Can. J. Plant Sci. 49, 765–768.

    Google Scholar 

  • Liu, D., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA 91, 1888–1892.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Salih, S., and Hammerschlag, F. (1998) Etiolation of ‘Royal Gala’ apple (Malus x domestica Borkh.) shoots promotes high-frequency shoot organogenesis and enhanced ß-glucuronidase expression from stem intemodes. Plant Cell Rep. 17. (In press)

    Google Scholar 

  • Liu, Q., and Hammerschlag, F.A. (1998) Exogenous application of auxin enhances Agrobacteriummediated transformation efficiency of etiolated intemodes from ‘Royal Gala’ apple. In Vitro Cell. Dev. Biol. 34, 75A.

    Google Scholar 

  • Lodge, J.K., Kaniewski, W.K., and Turner, N.E. (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci USA 90, 7089–7093.

    PubMed  CAS  Google Scholar 

  • Logemann, J., Jach, G. Tommerup, H., Mundy, J., and Schell, J. (1992) Expression of a ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology 10, 305–308.

    CAS  Google Scholar 

  • Lorito, M., Peterbauer, C., Hayes, C.K., and Harman, G.E. (1994) Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiol. 140, 623–629.

    CAS  Google Scholar 

  • Maheswaran, G., Welander, M., Hutchinson, J.F., Graham, M.W., and Richards, D. (1992) Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J. Plant Physiol. 39, 560–568.

    Google Scholar 

  • Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D. (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432–1436.

    PubMed  CAS  Google Scholar 

  • Martin, G.C., Miller, A.N., Castle, L.A., Morris, J.W., Morris, R.O., and Dandekar, A.M. (1990) Feasibility studies using (i-glucuronidase as a gene fusion marker in apple, peach, and radish. J. Amer. Soc. Hort. Sci. 115, 689–691.

    Google Scholar 

  • Martin, T., WBhner, R, Hummel, S., Willmitzer, L, and Frommer, W.B. (1992) The GUS reporter system as a tool to study plant gene expression, in S.R. Gallagher (ed.), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, New York, pp. 23–43.

    Google Scholar 

  • Mathias, R.J. and Mukasa. (1987) The effects of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.) Plant Cell Rep. 6, 454–457.

    CAS  Google Scholar 

  • Matzk, A., Mantell, S., and Shiemann, J. (1996) Localization of persisting agrobacteria in transgenic tobacco plants. Mol. Plant Microbe Interact. 9, 373–381.

    CAS  Google Scholar 

  • Maximova, S.N., Dandekar, A.M., and Guiltinan, M.J. (1998) Investigation ofAgrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate limiting. Plant Mol. Biol. 37, 549–559.

    PubMed  CAS  Google Scholar 

  • Mills, D., Hammerschlag, F.A., Nordeen, RO., and Owens, L.D. (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci. 104, 17–22.

    CAS  Google Scholar 

  • Niedz, R., Sussman, M., and Satterlee, J. (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep. 14, 403–407.

    CAS  Google Scholar 

  • Norelli, J.L and Aldwinckle, H.S. (1993) The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase-transgenic apple tissue. J. Amer. Soc. Hort. Sci. 118, 311–316.

    CAS  Google Scholar 

  • Norelli, J.L., Aldwinckle, H.S., Destefano-Beltran, L., and Jaynes, J.M. (1994) Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77, 123–128.

    CAS  Google Scholar 

  • Norelli, J.L., Aldwinckle, H.S., Destefano-Beltran, L., and Jaynes, J.M. (1994) Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77, 123–128.

    CAS  Google Scholar 

  • Norelli, J.L., Ko, K., Bolar, J.P., Hannan, G.E., Hrazdina, G.E., and Aldwinckle, H.S. (1997) Genetic engineering of apple for improved disease resistance and horticultural quality. Korean Soc. Hort. Sci. 15, 7–11.

    Google Scholar 

  • Norelli, J.L., Mills, J., and Aldwinckle, H.S. (1996) Leaf wounding increases efficiency ofAgrobacteriummediated transformation of apple. HortScience 3, 1026–1027.

    Google Scholar 

  • Norelli, J.L., Mills, J.Z., Jensen, L.A., Momol, M.T., and Aldwinckle, H.S. (1998) Genetic engineering of apple for increased resistance to fire blight. Acta Hort. (In press)

    Google Scholar 

  • Oppenheimer, C. and Slor, E. (1968) Breeding of apples for a sub-tropical climate. Theor. Appl. Genet. 38, 97–102.

    Google Scholar 

  • Owens, L.D. (1995) Overview of gene availability, identification, and regulation. HortScience 30, 957–961.

    Google Scholar 

  • Owens, L.D. and Heutte, T. (1997) A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Mol. Plant Microbe Interactions 10, 525–528.

    CAS  Google Scholar 

  • Penarrubia, L, Kim, R., Giovannoni, J., Kim, S.-H., and Fischer, R.L. (1992) Production of the sweet protein monellin in transgenic plants. Bio/Technology 10, 561–564.

    CAS  Google Scholar 

  • Perlak, F.J., Fuchs, R.L, Dean, D.A, McPherson, S.L., and Fischhoff, D.A. (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328.

    PubMed  CAS  Google Scholar 

  • Pollack, K., Barfield, D.G., and Shields, R. (1983) The toxicity of antibiotics to plant cell cultures. Plant Cell Rep. 2, 36–39.

    Google Scholar 

  • Ponomarenko, V.V. (1986) Review of the species in the genus Malus Mill. Bull. Appl. Bot. Genet. Breed. 106, 3–27.

    Google Scholar 

  • Predieri, S. and Malavasi, F.F. (1989) High-frequency shoot regeneration from leaves of the apple rootstock M26 (Malus pumila Mill.) Plant Cell Tissue Organ Cult. 17, 133–142.

    Google Scholar 

  • Puite, K.J. and Schaart, J.G. (1996) Genetic modification of the commercial apple cultivars Gala, Golden Delicious and Elstar via an Agrobacterium tumefaciens-mediated transformation method. Plant Sci. 119, 125–133.

    CAS  Google Scholar 

  • Ragan, W.H. 1926. Nomenclature of the apple: a catalogue index of the known varieties referred to in American publications from 1804 to 1904. USDA Bur. Plant Ind. Bull. 56, Washington, DC. Rehder, A. (1940)Manual ofCultivated Trees and Shrubs. Arnold Arboretum of Harvard University, Jamaica Plain.

    Google Scholar 

  • Rouwendal, G.J., Mendes, O., Wolbert, E.M., and Douwe de Boer, A. (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol. Biol. 33, 989–999.

    PubMed  CAS  Google Scholar 

  • Sanders, R. (1988) The Apple Book, Philosophical Library, New York.

    Google Scholar 

  • Sangwan, R.S., Bourgeois, Y., and Sangwan-Norreel, B.S. (1991) Genetic transformation ofArabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. MoLGen.Genet. 230, 475–485.

    CAS  Google Scholar 

  • Schaart, J.G., Puite, K.J., Kolova, L., and Pogrebnyak, N. (1995) Some methodological aspects of apple transformation by Agrobacterium. Euphytica 85, 131–134.

    Google Scholar 

  • Singh, Z. and Sansavini, S. (1998) Genetic transformation and fruit crop improvement. Plant Breeding Rev. 16, 87–134.

    Google Scholar 

  • Smigocki, AC. (1991) Cytokinin content and tissue distribution in plants transformed by a reconstructed isopentenyl transferase gene. Plant Mol. Biol. 16, 105–115.

    PubMed  CAS  Google Scholar 

  • Smigocki, A., Neal., J.W., McCanna, I, and Douglass, L. (1993) Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene. Plant Mol. Biot. 23, 325–335.

    CAS  Google Scholar 

  • Sriskandarajah, S. and Goodwin, P.B. (1998) Conditioning promotes regeneration and transformation in apple leaf explants. Plant Cell Tissue Organ Cult. 53, 1–11.

    CAS  Google Scholar 

  • Sriskandarajah, S., Goodwin, P.B., and Speirs, J. (1994) Genetic transformation of apple scion cultivar ‘Delicious’ via Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 36, 317–329.

    Google Scholar 

  • Sriskandarajah, S., Skirvin, R.M., Abu-Qaoud, H., and Korban, S.S. (1990) Factors involved in shoot elongation and growth of adventitious and axillary shoots of three apple scion cultivars in vitro. J. Hort. Sci. 65, 113–121.

    Google Scholar 

  • Strang, J.C. and Stushnoff, C. (1975) A classification of hardy North American apple cultivars based on hardiness zones. Fruit Var. J. 29, 78–108.

    Google Scholar 

  • Swartz, H.J., Bors, R., Mohamed, F., and Naess, S.K. (1990) The effect of in vitro pretreatments on subsequent shoot organogenesis from excised Rubus and Malus leaves. Plant Cell Tissue Organ Cult. 21, 179–184.

    CAS  Google Scholar 

  • Tarczynski, M.C. Jensen, R.G., and Bohnert, H.J. (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259, 508–510.

    CAS  Google Scholar 

  • Tydeman, H.M. (1964) The relation between time of leaf break and of flowering in apple seedlings. Rep. E. Mailing Res. Stn. For 1963, 70–72.

    Google Scholar 

  • USDA (1960) Index of plant diseases in the United States. Agr. Handbook 165, 384–389.

    Google Scholar 

  • Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inze, D., Reupold-Popp, P., Sandermann, H., and Langebartels, C., (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Bio/Technology 12, 165–168.

    Google Scholar 

  • Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene:Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250.

    PubMed  CAS  Google Scholar 

  • Vemade, D., Herrera-Estrella, A., Wang, K., and Van Montagu, M. (1988) Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. J. Bacteriol. 170, 5822–5829.

    Google Scholar 

  • Watkins, R. (1976) Apple and pear, in N.E. Simmonds (ed.), Evolution of Crop Plants, Longman, New York, pp. 247–250.

    Google Scholar 

  • Watkins, R. and Spangelo, L.P. (1970) Components of genetic variance for plant survival and vigour of apple trees. Theor. Appl. Genet. 40, 195–203.

    Google Scholar 

  • Way, R.D., Aldwinckle, H.S., Lamb, R.C., Rejman, A., Sansavini, S., Shen,T.,Watkins, R., Westwood, M.N., and Yoshida, Y. (1991) Apples (Malus), in J.N. Moore and J.R. Ballington (eds.), Genetic Resources of Temperate Fruit and nut Crops, Intl. Soc. Hort. Sci. Wageningen, pp. 1–62 (Acta Hort. 290 ).

    Google Scholar 

  • Welander, M. (1988) Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J. Plant Physiol. 32, 738–744.

    Google Scholar 

  • Welander, M. and Maheswaran, G. (1991) Regeneration and transformation in apple, in M.R. Ahuja (ed.), Woody Plant Biotechnology, Plenum Press, New York, pp. 237–246.

    Google Scholar 

  • Welander, M. and Maheswaran, G. (1992) Shoot regeneration from leaf explants of dwarfing apple rootstocks. J. Plant Physiol. 140, 223–228.

    CAS  Google Scholar 

  • Westwood, M.N. (1978) Temperate-Zone Pomology, Freeman, San Francisco.

    Google Scholar 

  • Wilcox, A.N. (1962) The apple, in H. Kappert and W. Rudorf (eds.), Handbuch der Planzenzuchtung, 2nd ed. Vol. 6, Parey, Berlin, pp. 637–645.

    Google Scholar 

  • Wilcox, W.F., Riedl, H., and Stiles, W.C. (1986) Tree-Fruit Production Recommendations, N.Y. State College of Agric. and Life Sciences, Cornell Univ., Ithaca, NY.

    Google Scholar 

  • Wilson, K.J., Hughes, S.G., and Jefferson, R.A. (1992) The Escherichia coli gus Operon: Induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria, in S. R. Gallagher (ed.), GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression, Academic Press, New York, pp. 7–22.

    Google Scholar 

  • Wise, R., Rollason, T., Logan, M., Andrews, J.M., and Bedford, K.A. (1978) HR 756, a highly active cephalosporin: Comparison with cefazolin and carbenicillin. Antimicrob. Agents Chemother. 14, 807–811.

    PubMed  CAS  Google Scholar 

  • Yao, J., Cohen, D., Atkinson, R., Richardson, K., and Morris, B. (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14, 407–412.

    CAS  Google Scholar 

  • Yepes, L. and Aldwinckle, H.S. (1994) Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue Organ Cult. 37, 257–269.

    CAS  Google Scholar 

  • Yoshida, Y. (1986) Quality improvement in apple breeding in Japan. Proc. Plant Breed. Symp., Dept. Sci. Indust. Res., Agron. Soc. New Zealand Spec. Pub. 5, 255–257.

    Google Scholar 

  • Yoshikura, H. (1989) Suppression of focus formation by bovine papillomavirus-transformed cells by contact with non-transformed cells: Involvement of sugar(s) and phosphorylation. Intl. J. Cancer 44, 885–891.

    CAS  Google Scholar 

  • Zhu, B., Chen, T.H.H., and Li, P.H. (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 198, 70–77.

    PubMed  CAS  Google Scholar 

  • Zhu, Q., Mahler, E.A., Masoud, S., Dixon, R., and Lamb, C.J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technol. 12, 807–812.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hammerschlag, F.A. (2000). Transformation of Malus . In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2313-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2313-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5427-2

  • Online ISBN: 978-94-017-2313-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics