Skip to main content

Mapping Quantitative Traits in Forest Trees

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 64))

Abstract

Classic Mendelian genetic analysis relies on a simple relationship between genotype and phenotype. The phenotypic differences among individuals in a population are directly attributable to their genotype at a single genetic locus (e.g., flower color in peas). However, most traits of economic interest in forest trees do not fall into discrete phenotypic classes, but instead result from the collective action of multiple genes which exhibit quantitative variation. Traditional analysis of quantitative traits relies on phenotypic variances and family means to estimate heritabilities and variance components, within the context of environmental factors (Zobel and Talbert 1984). Although quantitative genetic analyses assume polygenic inheritance, little can be determined in regards to the specific genes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Ahuja, M. R., M. E. Devey, A. T. Groover, K. D. Jermstad, and D. B. Neale, 1994. Mapped DNA probes from loblolly pine can be used for restriction fragment length polymorphism mapping in other conifers. Theor. Appl. Genet. 88: 279–282.

    Article  CAS  Google Scholar 

  • Aitken, K., G. Smail, J. Drenth, Y. Li, C.-H. Kao, and R. Teasdale, 1997. Detection of quantitative trait loci (QTL) for cone production in Pinus radiata, In Burdon, R. D., and J. M. Moore [edsl, Proceedings of IUFRO ‘87: Genetics of Radiata Pine. December 1–5, 1997. Rotorua, New Zealand. FRI Bulletin No. 203. Pp. 337–341.

    Google Scholar 

  • Barreneche, T., C. Bodénès, C. Lexer, J. F. Trontin, S. Fluchs, R. Streiff, C. Plomion, G. Roussel, H. Steinkellner, K. Burg, J. M. Favre, J. Glössl, and A. Kremer, 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, isozyme and rDNA markers. Theor. Appl. Genet. 97: 1090–1103.

    Article  CAS  Google Scholar 

  • Beavis, W. D., D. Grant, M. Albertsen, and R. Fincher, 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141–145.

    Google Scholar 

  • Beavis, W. D., 1995. The power and deceit of QTL experiments: lessons from comparative QTL studies. Proc. 49th Ann. Corn and Sorghum Indus. Res. Conf. 1994. Pp. 304–312.

    Google Scholar 

  • Bennetzen, J. L., and M. Freeling, 1993. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends In Genetics 9: 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, H. D., and G. S. Foster, 1992. Marker-aided selection and propagation systems in trees: advantages of cloning for studying quantitative inheritance. Can. J. For. Res. 22: 1044–1049.

    Article  Google Scholar 

  • Bradshaw, H. D., Jr., M. Villar, B. D. Watson, K. G. Otto, S. Stewart, and R. F. Stelller, 1994. Molecular genetics of growth and development in Populus. III. A genetic map of a hybrid poplar composed of RFLP, STS, and RAPD markers. Theor. Appl. Genet. 89: 551–558.

    Google Scholar 

  • Bradshaw, H. D., and D. Grattapaglia, 1994. QTL mapping in interspecific hybrids of forest trees. Forest Genetics 1: 191–196.

    Google Scholar 

  • Bradshaw, H. D., and R. F. Stettler, 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139: 963–973.

    CAS  Google Scholar 

  • Byrne, M., J. C. Murrell, J. V. Owen, P. Kriedemann, E. R. Williams, and G. F. Moran, 1997a. Identification and mode of action of quantitative loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet. 93: 674–681.

    Google Scholar 

  • Byrne, M., J. C. Murrell, J. V. Owen, E. R. Williams, and G. F. Moran, 1997b. Identification and mode of action of quantitative loci affecting seedling height and leaf area in Eucalyptus nitens. Theor. Appl. Genet. 95: 975–979.

    Article  CAS  Google Scholar 

  • Cervera, M. T., C. Plomion, and C. Malpica, 1999. Molecular markers and genome mapping in woody plants. In Jain,S. M., and S. C. Minocha reds], Molecular Biology of Woody Plants,Kluwer Academic Publishers, The Nederlands. (see Table of Contents in this publication).

    Google Scholar 

  • Darvasi, A., and M. Soller, 1992. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 85: 253–359.

    Article  Google Scholar 

  • Darvasi, A., and M. Soller, 1994. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138: 1365–1373.

    PubMed  CAS  Google Scholar 

  • Dayanandan, S., O. P. Rajora, and K. S. Bawa, 1998. Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor. Appl. Genet. 96: 950–956.

    Google Scholar 

  • Devey, M. E., M. M. Sewell, and D. B. Neale, 1996. A comparison of loblolly and radiata pine genomes using RFLP markers, In Dieters, M. J., A. C. Matheson, D. G. Nildes, C. E. Harwood and S. M. Walker reds], Tree Improvement for Sustainable Tropical Forestry. Proc. QFRI-IUFRO Conf., Caloundra, Queensland, Australia. 27 Oct.–1 Nov., 1996. Queensland Forestry Research Institute, Gympie, Queensland, Australia. Pp. 478–480.

    Google Scholar 

  • Doebley, J., 1993. Genetics, development and plant evolution. Current Opinion on Genetic Development 3: 865–872.

    Article  CAS  Google Scholar 

  • Edwards, M. D., C. W. Stuber, and J. F. Wendel, 1987. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. 1. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.

    Google Scholar 

  • Emebiri, L., M. Devey, A. Matheson, and M. Slee, 1997. Linkage of RAPD markers to NESTUR, a stem growth index in radiata pine seedlings. Theor. Appl. Genet. 95: 119–124.

    Google Scholar 

  • Grattapaglia, D., F. Bertolucci, and R. Sederoff, 1995. Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor. Appl. Genet. 90: 933–947.

    Article  CAS  Google Scholar 

  • Grattapaglia, D., F. Bertolucci, R. Penchel, and R. Sederoff, 1996. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144: 1205–1214.

    PubMed  CAS  Google Scholar 

  • Groover, A., M. Devey, T. Fiddler, J. Lee, R. Megraw, T. Mitchell-Olds, B. Sherman, S. Vujcic, C. Williams, and D. Neale, 1994. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138: 1293–1300.

    PubMed  CAS  Google Scholar 

  • Harry, D. E., B. Temesgen, and D. B. Neale, 1998. Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theor. Appl. Genet. 97: 327–336.

    Google Scholar 

  • Haley, C. S., S. A. Knott, and J.-M. Eisen, 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136: 1195–1207.

    PubMed  CAS  Google Scholar 

  • Kaya, Z., M. Sewell, and D. Neale, 1999. Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine. Theor. Appl. Genet. in press.

    Google Scholar 

  • Knott, S., D. Neale, M. Sewell, and C. Haley, 1997. Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor. Appl. Genet. 94: 810–820.

    Article  Google Scholar 

  • Kubisiak, T. L., C. D. Nelson, J. Nowak, and A. L. Friend, 1999. Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. J. Sus. For., in press.

    Google Scholar 

  • Kubisiak, T. L., F. V. Hebard, C. D. Nelson, J. Mang, R. Bernatzky, H. Huang, S. L. Anagnostakis, and R. L. Doudrick, 1997a. Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology 87: 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Kubisiak, T., C. Nelson, and M. Stine, 1997b. RAPD mapping of genomic regions influencing early height growth in longleaf pine x slash pine F, hybrids. Proc. 24th South. For. Tree Improv. Conf. June 9–12, 1997. Orlando, FL. Pp. 198–206.

    Google Scholar 

  • Lande, R., and R. Thompson, 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., and D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., and L. Kruglyak 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11: 241–247.

    Google Scholar 

  • Neale, D. B., and C. G. Williams, 1991. Restriction fragment length polymorphism mapping in conifers and applications to forest tree genetics and tree improvement. Can. J. For. Res. 21: 545–554.

    Article  CAS  Google Scholar 

  • Neale, D. B., and D. E. Harry, 1994. Genetic mapping in forest trees: RFLPs, RAPDs and beyond. AgBiotech News and Information 6: 107N - 114N.

    Google Scholar 

  • Neale, D., K. Jermstad, M. Sewell, and N. Wheeler, 1997. Progress towards detecting and verifying QTLs for wood property traits in loblolly pine and adaptive traits in Douglas-fir. Proceedings IUFRO Conf., Quebec City, Canada, Aug. 12–16. Pp. 52–56.

    Google Scholar 

  • Neale, D. B., 1998. Molecular genetic approaches to measuring and conserving adaptive genetic diversity. In Zencirci et al. [edsi, The Proceedings of International Symposium on In Situ Conservation of Plant Genetic Diversity, CRIFC, Turkey. Pp. 385–390.

    Google Scholar 

  • Newcombe, G., and H. D. Bradshaw, 1996. Quantitative trait loci conferring resistance in hybrid poplar to Septoria populicola, the cause of leaf spot. Can. J. For. Res. 26: 1943–1950.

    Google Scholar 

  • O’Malley, D. M., and S. E. McKeand, 1994. Marker assisted selection for breeding value in forest trees. Forest Genetics 1: 207–218.

    Google Scholar 

  • Paterson, A. H., S. Damon, J. D. Hewitt, D. Zamir, H. D. Rabinowitch, S. E. Lincoln, E. S. Lander, and S. D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparisons across species, generations, and environments. Genetics 127: 181–197.

    PubMed  CAS  Google Scholar 

  • Plomion, C., and C.-É. Durel, 1996. Estimation of the average effects of specific alleles detected by the pseudo-testcross QTL mapping strategy. Genet. Sel. Evol. 28: 223–235.

    Google Scholar 

  • Plomion, C., C: E. Durel, and D. O’Malley, 1996a. Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor. Appl. Genet. 93: 849–858.

    Google Scholar 

  • Plomion, C., A. Yani, and A. Marpeau, 1996b. Genetic determinism of 83-carene in maritime pine using random amplified polymorphic DNA ( RAPD) markers. Genome 39: 1123–1127.

    Google Scholar 

  • Plomion, C., P. Hurme, J.-M. Frigerio, M. Ridolphi, D. Pot, C. Pionneau, C. Avila, F. Gallardo, H. David, G. Neutlings, M. Campbell, F. M. Canovas, O. Savolainen, C. Bodénès, and A. Kremer, 1998. Developing SSCP markers in two Pinus species. Mol. Bred . 5: 21–31.

    Article  Google Scholar 

  • Rothschild, M. F., and M. Soller, 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13–20.

    Google Scholar 

  • Sewell, M. M., B. K. Sherman, and D. B. Neale, 1999. A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151: 321–330.

    CAS  Google Scholar 

  • Strauss, S. H., R. Lande, and G. Namkoong, 1992. Limitations of molecular-marker-aided selection in forest tree breeding. Can. J. For. Res. 22: 1050–1061.

    Google Scholar 

  • Tanksley, S. D., and J. D. Hewitt, 1988. Use of molecular markers in breeding for soluble solids in tomato: a re-examination. Theor. Appl. Genet. 75: 811–823.

    Article  CAS  Google Scholar 

  • Thoday, J. M., 1961. Location of polygenes. Nature 191: 368–370.

    Article  Google Scholar 

  • Verhaegen, D., C. Plomion, J.-M. Gion, M. Poitel, P. Costa, and A. Kremer, 1997. Quantitative trait dissection analysis in Eucalyptus using RAPD markers: 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor. Appl. Genet. 95: 597–608.

    Article  Google Scholar 

  • Wilcox, P. L., T. F. Richardson, and S. D. Carson, 1997. Nature of quantitative trait variation in Pinus radiata: insights from QTL detection experiments. In Burdon, R. D., and J. M. Moore [edsj, Proceedings of IUFRO ‘87: Genetics of Radiata Pine. December 1–5, 1997. Rotorua, New Zealand. FRI Bulletin No. 203. Pp. 304–312.

    Google Scholar 

  • Williams, C. G., and D. B. Neale, 1992. Conifer wood quality and marker-aided selection: a case study. Can. J. For. Res. 22: 1009–1017.

    Article  Google Scholar 

  • Wu, R., H. D. Bradshaw, and R. F. Stettler, 1997. Molecular genetics of growth and development in Populus (Salicaceae). 5. Mapping quantitative trait loci affecting leaf variation. Amer. J. Bot. 84: 143–153.

    CAS  Google Scholar 

  • Zobel, B. Z., and J. T. Talbert, 1984. Applied Tree Improvement. John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sewell, M.M., Neale, D.B. (2000). Mapping Quantitative Traits in Forest Trees. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2311-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2311-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5338-1

  • Online ISBN: 978-94-017-2311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics