Skip to main content

Molecular Biology of Tropical Nitrogen-Fixing Trees in the Casuarinaceae Family

  • Chapter
Molecular Biology of Woody Plants

Abstract

The Casuarinaceae family includes about eighty species of shrubs and trees belonging to four genera, namely: Allocasuarina, Casuarina, Ceuthostoma, and Gymnostoma. Casuarinaceae are primarily native to the Southern Hemisphere, mostly Australia and Indo-Pacific areas, from Malaysia to Polynesia. However, the range of distribution of some genera such as Casuarina has been extended considerably through artificial dissemination. All members of the family are characterized by highly reduced leaves and photosynthetic deciduous branchlets (Midgley et al., 1983; National Research Council, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkermans, A.D.L., S. Abdulkadir and M.J. Trinick, 1978. N2-fixing root nodules in Ulmaceae: Parasponia or (and) Trema spp? Plant Soil 49: 711–715.

    Article  CAS  Google Scholar 

  • Albrecht, C., R. Geurts, F. Lapeyrie and T. Bisseling, 1998. Endomycon-hizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A. Plant J. 15: 605–614.

    Article  CAS  Google Scholar 

  • Andersson, C.R., D.J. Llewellyn, W.J. Peacock and E.S. Dennis, 1997. Cell-specific expression of the promoters of two nonlegume hemoglobin genes in transgenic legume, Lotus corniculatus. Plant Physiol. 113: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Appleby, C. A., D. Bogusz, E.S. Dennis and W.J. Peacock, 1988. A role for haemoglobin in all plant roots? Plant Cell Environ. 11: 359–367.

    Article  CAS  Google Scholar 

  • Appleby, C.A., 1984. Leghemoglobin and Rhizobium respiration. Ann. Rev. Plant Physiol. 35: 443–478.

    Article  CAS  Google Scholar 

  • Baker, D.D. and B.C. Mullin, 1992. Actinorhizal symbioses. In: G.S. Stacey, R.H. Bums and H.J. Evans (Eds.), Biological Nitrogen Fixation, pp. 259–291. Chapman and Hall, New York.

    Google Scholar 

  • Benfey, P. N. and N-H. Chua, 1990. The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science 250: 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, P.N., L. Ren and N-H. Chua, 1990. Combinational and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 9: 1685–1696.

    PubMed  CAS  Google Scholar 

  • Benson, D.R and W.B. Silvester, 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev. 57: 293–319.

    PubMed  CAS  Google Scholar 

  • Berg, R.H, 1990. Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma 159: 35–43.

    Article  CAS  Google Scholar 

  • Berry, A.L. and L.A. Sunnel, 1990. The infection process and nodule development. In: C.R. Schwintzer and J.D. Tjepkema (Eds.), The Biology of Frankia and Actinorhizal Plants, pp. 61–81. Academic Press, New York.

    Google Scholar 

  • Berry, A.M., L. McIntyre and M.E. McCully, 1985. Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can. J. Bot. 64: 292–305.

    Article  Google Scholar 

  • Bogusz, D., C. Franche, H. Gherbi, D. Diouf, A. Nassar, C. Gobé, F. Auguy, J. Ahée and E. Duhoux, 1996. La symbiose Casuarinaceae-Frankia: approche moléculaire du rôle de la plante-hôte. Acta bot. Gallica 143: 621–633.

    Google Scholar 

  • Bogusz, D., D.J. Llewellyn, S. Craig, E.S. Dennis, C.A. Appleby and W.J. Peacock, 1990. Nonlegume hemoglobin genes retain organ-specific expression in heterologous transgenic plants. Plant Cell 2: 633–641.

    PubMed  CAS  Google Scholar 

  • Callaham, D. and J.G. Torrey, 1977. Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can. J. Bot. 51: 2306–2318.

    Article  Google Scholar 

  • Carsolio, C., F. Campos, F. Sanchez and M. Rocha-Sosa, 1994. The expression of a chimeric Phaseolus vulgaris nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic Lotus corniculatus nodules. Plant Mol. Biol. 1995–2001.

    Google Scholar 

  • Cérémonie, H., B. Coumoyer, F. Maillet and P. Normand, 1998. Genetic complementation of rhizobial nod mutants with Frankia DNA: artifact or realty? Mol. Gen. Genet. 260: 115–119.

    Article  Google Scholar 

  • Chen, L., Y. Cui, M. Qin, Y. Wang, X. Bai and Q. Ma, 1991. Identification of a nodD-like gene of Frankia by direct complementation of a Rhizobium nodD mutant. Mol. Gen. Genet. 233: 311–414.

    Article  Google Scholar 

  • De Bruijn, F.J., L. Szabados and J. Schell, 1990. Chimeric genes are used to study the regulation of genes involved in symbiotic plant-microbe interactions. Dev. Genet. 11: 182–196.

    Article  PubMed  Google Scholar 

  • Diem, RG. and Y.D. Dommergues, 1990. Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: C.R. Schwintzer, and J.D. Tjepkema (Eds), The Biology of Frankia and Actinorhizal Plants, pp. 317–342. Academic Press, New York.

    Google Scholar 

  • Diouf, D., H. Gherbi, Y. Mn, C. Franche, E. Duhoux and D. Bogusz, 1995. Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol. Plant Microbe Interact. 8: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A., P.M. Dey, and C.J. Lamb, 1983. Phytoalexins: enzymology and molecular biology. Adv. Enzymol. 55: 1–136.

    PubMed  CAS  Google Scholar 

  • Ellis, D.D., J. Rintamaki, K. Francis, K. Kleiner, K. Raffa and B. McCown, 1996. Transgene expression in spruce and poplar: from the lab to the field. In: M.R. Ahuja, W. Boerjan and D.B. Neale (Eds). Ellis, D.D., J. Rintamaki, K. Francis, K. Kleiner, K. Raffa and B. McCown. pp. 159–163. Kluwer Academic Publishers.

    Google Scholar 

  • Ferreira, P.C.G., A.S. Hemerly, J. Engler, M. van Montagu, G. Engler and D. Inzé, 1994. Developmental expression of the Arabidopsis cyclin gene cyc1At. Plant Cell 6: 1763–1774.

    PubMed  CAS  Google Scholar 

  • Ferreira, P.C.G., A.S. Hemerly, R.V. Villarroel, M. van Montagu and D. Inzé, 1991. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3: 531–540.

    PubMed  CAS  Google Scholar 

  • Fleming, A.I., J.B. Wittenberg, B.A. Wittenberg, W.F. Dudman and C.A. Appleby, 1987. The purification, characterization and ligand-binding kinetics of hemoglobins from root nodules of the non-leguminous Casuarina glauca-Frankia symbiosis. Biochem. Biophys. Acta 911: 209–220.

    Article  CAS  Google Scholar 

  • Forde, H.G., H.M. Day, J.F. Turton, S. Wen jun, J.V. Culimore and J.E. Oliver, 1989. Two glutamine synthetase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1: 391–401.

    PubMed  CAS  Google Scholar 

  • Forde, B.G., J. Freeman, J.E. Oliver and M. Pineda, 1990. Nuclear factors interact with conserved AIT-rich elements upstream of a nodule-enhanced glutamine synthetase gene from French bean. Plant Cell 2: 925–939.

    PubMed  CAS  Google Scholar 

  • Franche, C., D. Diouf, L. Laplaze, F. Auguy, T. Frutz, M. Rio, E. Duhoux and D. Bogusz, 1998a. Soybean (lbc3), Parasponia, and Trema hemoglobin gene promoters retain symbiotic and nonsymbiotic specificity in transgenic Casuarinaceae: implications for hemoglobin gene evolution and root nodule symbioses. Mol. Plant-Microbe Interact. 11: 887–894.

    Article  CAS  Google Scholar 

  • Franche, C., D. Diouf, Q.V. Le, A. N’Diaye, H. Gherbi, D. Bogusz, C. Gobé and E. Duhoux, 1997. Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J. 11: 897–904.

    Article  CAS  Google Scholar 

  • Franche, C., L. Laplaze, E. Duhoux, and D. Bogusz, 1998b. Actinorhizal symbioses: recent advances in plant molecular and genetic transformation studies. Crit. Rev. Plant. Sci. 17: 1–28.

    Google Scholar 

  • Gherbi, H., E. Duhoux, C. Franche, K. Pawlowski, A. Nassar, A M. Berry, and D. Bogusz, 1997. Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule. Physiol. Plant. 99: 608–616.

    Article  CAS  Google Scholar 

  • Hamer, D.H., 1986. Metallothionein. Annu. Rev. Biochem. 55: 913–951.

    Article  PubMed  CAS  Google Scholar 

  • Hemerly, A.S., P. Ferreira, J. Engler, M. van Montagu, G. Engler and D. Inzé, 1993. cdc2 expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723.

    Google Scholar 

  • Hooykas, P.J.J. and A.G.M. Beijersbergen, 1994. The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32: 157–179.

    Article  Google Scholar 

  • Jacobsen-Lyon, K., E.O. Jensen, J. Jorgensen, K.A. Marcker, W.J. Peacock and E.S. Dennis, 1995. Symbiotic and non-symbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7: 213–222.

    Google Scholar 

  • Kagi, J.H.R. and A. Schaffer, 1988. Biochemistry of metallothioneins. Biochemistry 27: 8509–8515.

    Article  PubMed  CAS  Google Scholar 

  • Keller, B. and C.J. Lamb, 1989. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Develop. 3: 1639–1646.

    Article  PubMed  CAS  Google Scholar 

  • Laplaze, L., H. Gherbi, C. Franche, E. Duhoux, and D. Bogusz, 1998. cDNA sequence for an acyl carrier protein from actinorhizal nodules of Casuarina glauca (Acession No. Y10994) (PGR98–066). Plant Physiol. 116: 1605.

    Google Scholar 

  • Lauridsen, P., H. Franssen, J. Stougaard, T. Bisseling and K. Marker, 1993. Conserved regulation of the soybean early nodulin ENOD2 gene promoter in determinate and indeterminate transgenic root nodules. Plant J. 3: 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Le, Q.V., D. Bogusz, H. Gherbi, A. Lappartient, E. Duhoux and C. Franche, 1996. Agrobacterium tumefaciens gene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci. 118: 57–69.

    Google Scholar 

  • Long, S.R., 1996. Rhizobium symbiosis: Nod factors in perspective. Plant Cell 8: 1885–1898.

    Google Scholar 

  • Mathesius, U., H.R.M. Schlaman, H.P. Spaink, C. Sautter, B.G. Rolfe and M.A. Djordjevic, 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Midgley, SJ., J.W. Tumbull, and R.D. Johnson, 1983. Casuarina ecology, management and utilisation. CSIRO, Melbourne. National Research Council, 1984. Casuarinas nitrogen fixing trees for adverse sites. National Academy Press, Washington DC.

    Google Scholar 

  • Newcomb, W., and C.E. Pankhurst, 1982. Fine structure of actinorhizal root nodules of Coraria arborea (Corariaceae). N.Z. J. Bot 20: 93–103.

    Google Scholar 

  • Newcomb, W., R.L. Peterson, D. Callaham, and J.G. Torrey, 1978. Structure and host-actinomycete interactions in developing root nodules of Comptonia perigrina. Can J. Bot 56: 502–531.

    Article  Google Scholar 

  • Odell, J.T., F. Nagy and N-H. Chua, 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812.

    Article  PubMed  CAS  Google Scholar 

  • Pilate, G., D. Ellis and S. Hawkins, 1997. Transgene expression in field-grown poplar. p. 84–89. In: N.B. Klopfenstein, Y.W. Chun, M.S. Kim and M.R. Ahuja (Eds). Micropropagation, genetic engineering, and molecular biology of Populus. Gen. Tech. Rep. RM-GTR-297. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Pinyopusarerk, K. and A.P.N. House, 1993. Casuarina: An Annoted Bibliography. English Press, Nairobi, Kenya. Quandt, H-J., A. Pithier and I. Broer, 1993. Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant Microbe Interact. 6: 699–706.

    Google Scholar 

  • Racette, S. and J. Torrey, 1989. Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Eleagnaceae) induced by Frankia strain HFPGpI1. Can. J. Bot 67: 2873–2879.

    Article  Google Scholar 

  • Ribeiro, A., A.D.L. Akkermans, A. van Kammen, A. Bisseling and K. Pawlowski, 1995. A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7: 785–794.

    PubMed  CAS  Google Scholar 

  • Robinson, N.J., A.M. Tommey, C. Kuske and P.J. Jackson, 1993. Plant metallothioneins. Biochem. J. 295: 1–10.

    PubMed  CAS  Google Scholar 

  • Rohde, A., M. van Montagu, D. Inzé and W. Boerjan, 1997. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta 201: 43–52.

    Article  CAS  Google Scholar 

  • Sandal, N.N., K. Bojsen, and K.A. Marker, 1987. A small family of nodule specific genes from soybean. Nucleic Acids Res. 15: 1507–1519.

    Article  PubMed  CAS  Google Scholar 

  • Sederoff, R.R., 1995. Forest trees. In: K. Wang, A. Herrera-Estrella and M. Van Montagu (Eds), Sederoff, R.R.. p. 150–163. Cambridge University Press.

    Google Scholar 

  • Shirley, B.W, 1996. Flavonoid biosynthesis “New” functions for an “old” pathway. Trends Plant Sci. 1: 377–381.

    Google Scholar 

  • Silvester, W.B., S.L. Harris and J.D. Tjepkema, 1990. In: C.R. Schwintzer, and J.D. Tjepkema (Eds.), The Biology of Frankia and Actinorhizal Plants, pp. 1–13. Academic Press, New York.

    Google Scholar 

  • Soltis, D.E., P.S. Soltis, D.R. Morgan, S.M. Swensen, B.C. Mullin, J.M. Dowd and P.G. Martin, 1995. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. USA. 92: 2647–2651.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C. and J. Browse, 1991. Plant lipids: metabolism, mutants, and membranes. Science 252: 80–67.

    Article  PubMed  CAS  Google Scholar 

  • Soupène, E., M. Froussard, P. Boistard, G. Truchet and J. Batut, 1995. Oxygen as key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc. Natl. Acad. Sci. USA. 92: 3759–3763.

    Article  PubMed  Google Scholar 

  • Spaink, H.P., 1996. Regulation of plant morphogenesis by lipochitin oligosaccharides. Crit. Rev. Plant Sci. 15: 559–582.

    CAS  Google Scholar 

  • Torrey, J.G., 1976. Initiation and development of root nodules of Casuarina (Casuarinaceae). Amer. J. Bot. 63 (3): 335–345.

    Article  Google Scholar 

  • Trinick, M.L., 1979. Structure of nitrogen-fixing nodules formed by Rhizobium on roots of Parasponia andersonii. Appl. Environ. Microbiol. 55: 2046–2055.

    Google Scholar 

  • van Rhijn, P., Y. Fang, S. Galili, O. Shaul, N. Atzmon, S. Wininger, Y. Eshed, M. Lum, Y. Li, V. To, N. Fujishige, Y. Kapulnik and A.M. Hirsch, 1997. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction patways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proc. Natl. Acad. Sci. USA. 94: 5467–5472.

    Article  PubMed  Google Scholar 

  • Vera, P., C. Lamb and P.W. Dorener, 1994. Cell-cycle regulation of hydroxyproline-rich glycoprotein HRGPnt3 gene expression during the initiation of lateral root meristem. Plant J. 6: 717–727.

    Article  CAS  Google Scholar 

  • Yang, W.C., H.C.J. Canter Cremers, P. Hogendijk, P. Katinakis, C.A. Wijffelman, H. Franssen, A. van Kammen and T. Bisseling, 1992. In situ localization of chalcone synthase mRNA in pea root nodule development. Plant J. 2: 143–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Bogusz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Laplaze, L. et al. (2000). Molecular Biology of Tropical Nitrogen-Fixing Trees in the Casuarinaceae Family. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2311-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2311-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5338-1

  • Online ISBN: 978-94-017-2311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics