Skip to main content

Alcohol Dehydrogenase: A Molecular Marker in Grapevine

  • Chapter
Book cover Molecular Biology & Biotechnology of the Grapevine

Abstract

Alcohol dehydrogenase (ADH; alcohol: NAD oxidoreductase; EC 1.1.1.1) is a dimericzinc enzyme which catalyses the inter-conversion of acetaldehyde to ethanol, using NAD/NADH as a cofactor. It is the terminal step of glycolysis, leading to fermentative metabolism in anaerobic conditions. In this context, evolution of this enzyme’s activity, and gene expression have been widely investigated in response to anaerobiosis in the plant kingdom, especially in organs such as roots, tubers, seeds and fruit (Kadowaki et al., 1988; Matton et al., 1990; Sun Chen and Chase, 1993; Ke et al., 1994; Millar et al., 1994; Chung and Ferl, 1999). ADH activity is generally low under normal oxygen tension, but increases strongly when the absence of oxygen leads to ethanolic fermentation. It appears to play an important role in the anaerobiosis response of plants, as ADH induction was generally detected in organs adapted to this stress. In maize, Gerlach et al. (1983) showed that ADH is fundamental to anaerobic survival for Adh null mutants. Paul and Ferl (1991) described the enhanced transcription of two genes responsible for a higher ADH synthesis. During oxygen deprivation, the assumed role for ADH is to reduce toxic acetaldehyde to ethanol and to recycle NADH to NAD, thereby allowing anaerobic glycolysis to be used as energy-generating pathway. It could also be involved in cytoplasmic homeostasis, as level of ADH activity is tightly regulated by pH, and uncontrolled cytoplasmic acidosis is lethal (Roberts et al., 1984). Other abiotic factors such as wounding and elicitor treatment (Constabel et al., 1990), exposure to cold stress (Christie et al., 1991; Jarillo et al., 1993), and light (Matton et al., 1990) have been shown to increase ADH activity and/or Adh gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bicsak, T.A., Kann, L.R., Reiter, A., and T. Jr. Chase (1982) Tomato alcohol dehydrogenase: purification and substrate specificity. Arch. Biochem. Biophys. 216: 605–615.

    Google Scholar 

  • Bonghi, C., Ramina, A., Ruperti, B., Vidrih, R., and P. Tonutti (1999) Peach fruit ripening and quality in relation to picking time, and hypoxie and high CO2 short-term postharvest treatments. Postharvest Biol. Technol. 16: 213–222.

    Google Scholar 

  • Branden, C.I., Eklund, H., Cambillau, C., and A.J. Pryor (1984) Correlation of exons with structural domains in alcohol dehydrogenase. EMBO J. 3: 1307–1310.

    PubMed  CAS  Google Scholar 

  • Breathnach, R. and P. Chambon (1981) Organization and expression of eucaryotic split genes coding for proteins. Annu. Rev. Biochem. 50: 349–383.

    Google Scholar 

  • Bucher, M., Brander, K.A., Sbicego, S., Mandel, T., and C. Kuhlemeier (1995) Aerobic fermentation in tobacco pollen. Plant Mol. Biol. 28: 739–750.

    Google Scholar 

  • de Bruxelles, G.L., Peacock, W.J., Dennis, E.S., and R. Dolferus (1996) Abscissic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 111: 381–391.

    Article  PubMed  Google Scholar 

  • Callis,.1., Fromm, M., and V. Walbot (1987) Introns increase gene expression in cultured maize cells. Gene Dev. 1: 1183–1200.

    Article  PubMed  CAS  Google Scholar 

  • Chervin, C., Truett, J.K., and J. Speirs (1999) Alcohol dehydrogenase expression and alcohol production during pear ripening. J. Amer. Soc. Hort. Sci. 124: 71–75.

    Google Scholar 

  • Christie, P.J., Hahn, M., and V. Walbot (1991) Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol. 95: 699–706.

    Article  PubMed  CAS  Google Scholar 

  • Chung, H.J. and R.J. Ferl (1999) Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol. 121: 429–436.

    Google Scholar 

  • Clegg, M.T., Cummings, M.P., and M.L. Durbin (1997) The evolution of plant nuclear genes. Proc. Natl. Acad. Sci. USA 94: 7791–7798.

    Google Scholar 

  • Coombe, B.G. (1976) The development of fleshy fruits. Annu. Rev. Plant Physiol. 27: 207–228.

    Google Scholar 

  • Conley, T.R., Peng, H.P., and M.C. Shih (1999) Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis. Plant Physiol. 119: 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Constabel, C.P., Matton, D.P., and N. Brisson (1990) Concurrent synthesis and degradation of alcohol dehydrogenase in elicitor-treated and wounded potato tubers. Plant Physiol. 94: 887–891.

    Article  PubMed  CAS  Google Scholar 

  • Cossins, E.A. (1978) Ethanol metabolism in plants. In: Plant Life in Anaerobic Environments, D.D. Hook and R.M.M. Crawford (Eds). Ann Arbor Press Publishers Ann Arbor, pp. 169–202.

    Google Scholar 

  • Davies, C., Boss, P.K., and S.P. Robinson (1997) Treatment of grape berries, a non-climacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115: 1155–1161.

    PubMed  CAS  Google Scholar 

  • Davies, C., Wolf, T., and S.P. Robinson (1999) Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci. 147: 93–100.

    Article  CAS  Google Scholar 

  • Dennis, E.S., Gerlach, W.L., Pryor, A.J., Bennetzen, J.L., Inglis, A., Llewellyn, D., Sachs, M.M., Ferl, R.J., and W.J. Peacock (1984) Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucleic Acids Res. 12: 3983–4000.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, E.S., Sachs, M.M., Gerlach, W.L., Finnegan, E.J., and W.J. Peacock (1985) Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nucl. Acids Res. 13: 727–743.

    Google Scholar 

  • Dennis, E.S., Walker, J.C., Llewellyn, D.S., Ellis, J.G., Singh, K., Tokuhisa, J.G., Wolstenholme, D.R., and W.J. Peacock (1987) The response to anaerobic stress: transcriptional regulation of genes for anaerobically induced proteins. In: Plant Molecular Biology, D. von Wettstein and N.H. Chua (Eds). NATO AS1 Series, Vol. 140, Plenum Press, New York, pp. 407–417.

    Google Scholar 

  • Dolferus, R., Jacobs, M., Peacock, W.J., and E.S. Dennis (1994) Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 105: 1075–1087.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.O., Tapia, O., and C.I. Bränden (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 A resolution. J. Mol. Biol. 102: 27–59.

    Google Scholar 

  • Flanzy, C. (1998) Métabolisme anaérobie et maturation du raisin. In: Oenologie. Fondements Scientifiques et Technologiques, C. Flanzy (Ed.). Oenologie, Tec et Doc Lavoisier, Paris, pp. 562–578.

    Google Scholar 

  • Frenkel, C., Peters, J.S., Tieman, D.M., Tiznado, M.E., and A.K. Handa (1998) Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J. Biol. Chem. 273: 4293–4295.

    Google Scholar 

  • Gerlach, W.L., Lörz, H., Sachs, M.M., Llewellyn, D., Pryor, A.J., Dennis, E.S., and W.J. Peacock (1983) The alcohol dehydrogenase genes of maize: a potential gene transfer system in plants. In: Manipulation and Expression of Genes in Eukaryotes, P. Nagley, A. Linnane, W.J. Peacock and J. Pateman (Eds). Academic Press, Sydney, pp. 213–220.

    Google Scholar 

  • Gregerson, R., McLean, M., Beld, M., Gerats, A.G., and J. Strommer (1991) Structure, expression, chromosomal location and product of the gene encoding ADHI in Petunia. Plant Mol. Biol. 17: 37–48.

    Google Scholar 

  • Gregerson, R.G., Cameron, L., McLean, M., Dennis, P., and J. Strommer (1993) Structure, expression, chromosomal location and product of the gene encoding Adh2 in Petunia. Genetics 133: 999–1007.

    PubMed  CAS  Google Scholar 

  • Hanley, B.A. and M.A. Schuler (1988) Plant intron sequences: evidence for distinct groups of introns. Nucl. Acids Res. 16: 7159–7175.

    Google Scholar 

  • Higgs, D.C., Shapiro, R.S., Kindle, K.L., and D.B. Stern (1999) Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol. Cell. Biol. 19: 8479–8491.

    Google Scholar 

  • ingclbrecht, I.L., Herman, L.M., Dekcyscr, R.A., Van Montagu, M.C., and A.G. Depicker (1989) Different 3’ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1: 671–680.

    Google Scholar 

  • Hjelmqvist, L., Hackett, M., Shafqat, J., Danielsson, O., aida, J., Hendrickson, R.C., Michel, H., Shabanowitz, J., Hunt, D.F., and H. Jornvall (1995) Multiplicity of N-terminal structures of medium-chain alcohol dehydrogenases. Mass-spectrometric analysis of plant, lower vertebrate and higher vertebrate class 1, II, and III forms of the enzyme. FEBS Lett. 367: 237–240.

    Google Scholar 

  • Ingersoll, J.C., Rothenberg, M., Liedl, B.E., Folkerts, K., Garvin, D., Hanson, M.R., Doyle, J.J., and M.A. Mutschler (1994) A novel anther-expressed adh-homologous gene in Lycopersicon esculentum. Plant Mol. Biol. 26: 1875–1891.

    Google Scholar 

  • Jarillo, J.A., Leyva, A., Salinas, J., and J.M. Martinez-Zapater (1993) Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol. 101: 833–837.

    PubMed  CAS  Google Scholar 

  • Jaulmes, P., Brun, S., and M.J. Dubois (1967) La présence d’alcools dans différents végétaux et produits végétaux. Tray. Soc. Pharma. Montpellier 27: 117–139.

    Google Scholar 

  • Joshi, C.P. (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl. Acids Res. 15: 6643–6653.

    Google Scholar 

  • Kadowaki, H.I., Matsuoka, M., Murai, N., and K. Harada (1988) Induction of two alcohol dehydrogenase polypeptides in rice roots during anaerobiosis. Plant Sci. 54: 29–36.

    Article  CAS  Google Scholar 

  • Ke, D., Yahia, E., Mateos, M., and Kader A.A. (1994) Ethanolic fermentation of “Barlet” pears as influenced by ripening stage and atmospheric composition. J. Am. Soc. Hort. Sci. 119: 976–982.

    Google Scholar 

  • Kimmerer, T.W. and M.A. Stringer (1988) Alcohol dehydrogenase and ethanol in the stems of trees. Plant Physiol. 87: 693–697.

    Article  PubMed  CAS  Google Scholar 

  • Kloeckener-Gruissem, B., Vogel, J.M., and M. Freeling (1992) The TATA box promoter region of maize ADH1 affects its organ-specific expression. EMBO J. 11: 157–166.

    PubMed  CAS  Google Scholar 

  • Knee, M. (1991) Fruit metabolism and practical problems of fruit storage under hypoxia and anoxia. In: Plant Life under Oxygen Deprivation, M.B. Jackson, D.D. Davies and H. Lambers (Eds). SPB Academic Publishing, The Hague, pp. 229–243.

    Google Scholar 

  • Longhurst, T.J., Tung, H.F., and C.J. Brady (1990) Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruit. J. Food Biochem. 14: 421–433.

    Article  Google Scholar 

  • Longhurst, T., Lee, E., Hinde, R., Brady, C., and J. Speirs (1994) Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. Plant Mol. Biol. 26: 1073–1084.

    Google Scholar 

  • Luehrsen, K.R. and V. Walbot (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 225: 81–93.

    Google Scholar 

  • Matton, D.P., Constabel, P., and N. Brisson (1990) Alcohol dehydrogenase gene expression in potato following elicitor and stress treatment. Plant Mol. Biol. 14: 775–783.

    Google Scholar 

  • Messing, J., Geraghty, D., Herdecker, G., Nien-Tai, H., Kridl, J., and I. Rubenstein (1983) Plant gene structure. In: Genetic Engineering in Plants, T. Kosuge, O. Merredith and A. Hollaender (Eds). Plenum Press, New York, pp:211–227.

    Google Scholar 

  • Millar, A.A., Olive, M.R., and E.S. Dennis (1994) The expression and anaerobic induction of alcohol dehydrogenase in cotton. Biochem. Genet. 32: 279–300.

    Google Scholar 

  • Mogen, B.D., MacDonald, M.H., Graybosch, R., and A.G. Hunt (1990) Upstream sequences other than AAUAAA are required for efficient messenger RNA 3’-end formation in plants. Plant Cell 2: 1261–1272.

    PubMed  CAS  Google Scholar 

  • Molina, I., Nicolas, M., and J. Crouzet (1986) Grape alcohol dehydrogenase. I. Isolation and characterization. Am. J. Enol. Vitic. 37: 169–173.

    Google Scholar 

  • Molina, I., Salles, C., Nicolas, M., and J. Crouzet (1987) Grape alcohol dehydrogenase. II. Kinetics studies: mechanism, substrate and coenzyme specificity. Am. J. Enol. Vitic. 38: 60–64.

    Google Scholar 

  • Morton, B.R., Gaut, B.S., and M.T. Clegg (1996) Evolution of alcohol dehydrogenase genes in the palm and grass families. Proc. Natl. Acad. Sci. USA 93: 11735–11739.

    Google Scholar 

  • Nanos, G.D., Romani, R.J., and A.A. Kader (1992) Metabolic and other responses of “Bartlett” pear fruit and suspension-cultured “Passe Crassane” pear fruit cells held in 0.25% 02. J. Amer. Soc. Hort. Sci. 177: 934–940.

    Google Scholar 

  • Or, E., Baybik, J., Lavee, S., Sadka, A., and A. Ogredovitch (2000) Isolation and characterization of two eDNA clones (Accession No. AF195866 and AF195867) encoding alcohol dehydrogenase in grape (Vttis vinifera cv Perlette) developing fruits. Plant Physiol. 122: 619.

    Article  PubMed  Google Scholar 

  • Paul, A.L. and R.J. Ferl (1991) Adhl and Adh2 regulation. Maydica 36: 129–134.

    Google Scholar 

  • Pouteau, S., Spielmann, A., Meyer, C., Grandbastien, M.A., and M. Caboche (1991) Effects of Intl tobacco retrotransposon insertion on target gene transcription. Mol. Gen. Genet. 228: 233–239.

    Google Scholar 

  • Roberts, J.K., Callis, J., Jardetzky, O., Walbot, V., and M. Freeling (1984) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. Natl. Acad. Sci. USA 81: 6029–6033.

    Google Scholar 

  • Robinson, S.P., Jacobs, A.K., and I.B. Dry (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Roe, B., Davis, P.L., and J.H. Bruemmer (1984) Pyruvate metabolism during maturation of Hamlin oranges. Phytochemistry 23: 713–717.

    Article  CAS  Google Scholar 

  • Romieu, C.G., Sauvage, F.X., Robin, J.P., and C. Flanzy (1989) Evolution de diverses activités enzymatiques au cours du métabolisme anaérobie de la baie de raisin. Conn. Vigne Vin 23: 165–173.

    Google Scholar 

  • Romieu, C., Tesnière, C., Than-Ham, L., Flanzy, C., and J.P. Robin (1992) An examination of the importance of anaerobiosis and ethanol causing injury to grape mitochondria. Am. J. Enol. Vitic. 43: 129–133.

    Google Scholar 

  • Rothan, C., Duret, S., Chevalier C., and P. Raymond (1997) Suppression of ripening-associated gene expression in tomato fruits subjected to a high CO2 concentration. Plant Physiol. 114: 255–263.

    PubMed  CAS  Google Scholar 

  • Rothnie, H.M. (1996) Plant mRNA 3’-end formation. Plant Mol. Biol. 32: 43–61.

    Google Scholar 

  • Ruffner, H.P., Hürlimann, M., and R. Skrivan (1995) Soluble invertase from grape berries: purification, deglycosylation and antibody specificity. Plant Physiol. Biochem. 33: 25–31.

    Google Scholar 

  • Saitou, N. and M. Nei (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    Google Scholar 

  • Sarni-Manchado, P., Ageorges, A., Verriès, C., Paris, D., and C. Tesnière (1996) Induction de gènes au cours de la maturation du raisin. Etude d’un gène de l’alcool deshydrogénase. In: Oenologie 95, A. LonvaudFunel (Ed.). Tec et Doc Lavoisier, Paris, pp. 38–43.

    Google Scholar 

  • Sarni-Manchado, P., Verriès, C., and C. Tesnière (1997) Molecular characterization and structural analysis of one alcohol dehydrogenase gene (GV-Adhl) expressed during ripening of grapevine (V. vinifera L.) berry. Plant Sci. 125: 177–187.

    Article  CAS  Google Scholar 

  • Sauvage, F.X., Romieu. C., Sarris, J., Pradal, M., Robin, J.P., and C. Flanzy (1991) Evolution de quelques activités enzymatiques au cours de la maturation du raisin. Influence d’un stress hypoxique après la vendange. R. Fr. Oeno. 132: 14–20.

    Google Scholar 

  • Smith, P.A. and Corces, V.G. (1991) Drosophila transposable elements: mechanisms of mutagenesis and interactions with the host genome. Adv. Genet. 29: 229–300.

    Google Scholar 

  • Staudt, G., Schneider, A., and J. Leidel (1986) Phases of berry growth in V. vinifera. Annal. Bot. 58: 789–800.

    Google Scholar 

  • Sun Chen, A.R.C. and T.J. Chase (1993) Alcohol dehydrogenase 2 and pyruvate decarboxylase induction in ripening and hypoxic tomato fruit. Plant Physiol. Biochem. 31: 875–885.

    Google Scholar 

  • Tadege, M. and C. Kuhlemcier (1997) Aerobic fermentation during tobacco pollen development. Plant Mol. Biol. 35: 343–354.

    Google Scholar 

  • Tadege, M., Dupuis, I., and C. Kuhlemeier (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci. 4: 320–325.

    Article  PubMed  Google Scholar 

  • Tanksley, S.D. (1979) Linkage, chromosomal association, and expression of Adh-1 and Pgm-2 in tomato. Biochem. Genet. 17: 1159–1167.

    Google Scholar 

  • Tanksley, S.D. and R.A. Jones (1981) Effects of 02 stress on tomato alcohol dehydrogenase activity: description of a second ADH coding genes. Biochem. Genet. 19: 397–409.

    Google Scholar 

  • Tattersall, D.B., van Heeswijck, R., and P.B. Hoj (1997) Identification and characterization of a fruit-specific that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiol. 114: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Terrier, N., Sauvage, F.X., and C. Romieu (1996) Absence de crise respiratoire, induction de l’activité alcool déshydrogénase et diminution de l’acidité vacuolaire lors de la maturation du raisin. In: Oenologie 95, A. Lonvaud-Funel (Ed.). Tec et Doc Lavoisier, Paris, pp. 24–28.

    Google Scholar 

  • Terrier, N. (1997) Aspects Bioénergétiques et Moléculaires du Stockage des Acides Organiques dans la Baie de Raisin (V. vinifera L.), Doctorat en Sciences des Aliments. Université de Montpellier.

    Google Scholar 

  • Terrier, N. and C. Romicu (1998) Inhibition of vacuolar proton pumps by ethanol impairs grape berry compartimentation. Aust. J. Grape Wine Res. 4: 39–45.

    Google Scholar 

  • Tesnière, C., Romieu, C., and M.E. Vayda (1993) Changes in the gene expression of grapes in response to hypoxia. Am. J. Enol. Vitic. 44: 445–451.

    Google Scholar 

  • Tesnière, C. Romieu, C., Dugelay, 1., Nicol., M.Z., Flanzy, C., and.LP. Robin (1994) Partial recovery of grape energy metabolism upon aeration following anaerobic stress. J. Exp. Bot. 45: 145–151.

    Google Scholar 

  • Tesnière, C. and C. Verriès (2000) Molecular cloning and expression of cDNAs encoding alcohol dehydrogenases from Vais vinifera L. during berry development. Plant. Sci. 157: 77–88.

    Google Scholar 

  • Thatcher, D.R. (1980) The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (AdhN-11, AdhS and AdhUF) from the fruitfly Drosophila melanogaster. Biochem. J. 187: 875–883.

    Google Scholar 

  • van Der Straeten, D., Rodrigues Pousada, R.A., Gielen, J., and M. Van Montagu (1991) Tomato alcohol dehydrogenase. Expression during fruit ripening and under hypoxic conditions. FEBS Lett. 295: 39–42.

    Google Scholar 

  • van Eldik, R G.J., Ruiter, K., van Herpen, M.M.A., Schrauwen, J.A.M., and G.J. Wullems (1997) Induced ADH gene expression and enzyme activity in pollinated pistils of Solanum tuberosum. Sex Plant Reprod. 10: 107–109.

    Article  Google Scholar 

  • Verriès, C., Bès, C., This, P., and C. Tesnière (2000) Cloning and• characterization of Vine-1, a LTRretrotransposon like element in Vitis vinifera L. and other Vitis species, Genome 43: 366–379.

    PubMed  Google Scholar 

  • Weil, C.F. and S.R. Wessler (1990) The effects of plant transposable element insertion on transcription initiation and RNA processing. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 527–552.

    Google Scholar 

  • Wolfe, W.H. (1976) Identification of grape varieties by isoenzyme banding patterns. Am. J. Enol. Vitic. 27: 68–73.

    Google Scholar 

  • Yokoyama, S. and D.E. Harry (1993) Molecular phylogeny and evolutionary rates of alcohol dehydrogenases in vertebrates and plants. Mol. Biol. Evol. 10: 1215–1226.

    Google Scholar 

  • Zhu, Q., Dabi, T., and C. Lamb (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell 7: 1681–1689.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tesnière, C., Verriès, C. (2001). Alcohol Dehydrogenase: A Molecular Marker in Grapevine. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics