Skip to main content

Pathogenesis Related Proteins — Their Accumulation in Grapes during Berry Growth and Their Involvement in White Wine Heat Instability. Current Knowledge and Future Perspectives in Relation to Winemaking Practices

  • Chapter
Molecular Biology & Biotechnology of the Grapevine

Abstract

Grape growing represents one of the world’s major horticultural enterprises with the vast majority of the production destined for further value-adding through winemaking. An important consideration of grape production is therefore how key constituents of the berry contribute positive and negative attributes to the final bottled wine product. One feature of wine, which is important to the perception of quality, is brilliance and clarity. The presence of “unstable” proteins ranges from 50 to 100 mg/L but occasionally up to several hundred mg/L (Koch and Sajak, 1959; Bayly and Berg, 1967; Somers and Ziemelis, 1973a; Hsu and Heatherbell, 1987a; Murphey et al., 1989; Yokotsuka et al.,1991; Dorrestein et al.,1995; Santoro, 1995; Pocock et al.,1998 a,b; Pocock et al.,1999), and their aggregation to form haze in white wine is a ubiquitous concern for winemakers. Protein haze formation can occur after bottling and is almost certainly due to the slow denaturation of wine proteins. This, in turn, leads to protein aggregation and formation of unattractive suspensions as well as amorphous cloudy precipitates (Paetzold et al., 1990; Waters et al., 1991). Regardless of the taste, consumers will in general reject wines containing hazes or cloudy precipitates due to fears of microbial spoilage having occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batalia, M.A., Ernst, S., Roberts, W., and J.D. Robertus (1996) The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like PR-5 family. Nature Structural Biology 3: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Bayly, F.C. and HW. Berg (1967) Grape and wine proteins of white wine varietals. Am. J. Enol. Vitic. 18: 1832.

    Google Scholar 

  • Boller, T. (1987) Hydrolytic enzymes in plant disease. In: Plant-Microbe Interactions, Molecular and Genetic Perspectives. Kosuge, T. and E.W. Nester, (Eds). Macmillan: New York, Vol. 2: 385–413.

    Google Scholar 

  • Boss, PK., Davies, C., and S.P. Robinson (1996a) Analysis of the expression of anthocyanin pathway genes in developing V. vinifera L. ev Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111: 1059–1066.

    PubMed  CAS  Google Scholar 

  • Busam, G., Kassemeyer, H.H., and U. Matern (1997) Differential expression of chitinases in V. vinifera L. responding to systemic acquired resistance activators or fungal challenge. Plant Physiol. 115: 1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Cawthorn, D.L. and J.R. Morris (1982) Relationship of seed number and maturity to berry development, fruit maturation, hormonal changes, and uneven ripening of “Concord” (Vitis labrusca L.) grapes. J. Am. Soc. Hort. Sci. 107: 1097–1104.

    Google Scholar 

  • Clendennen, S.K. and G.D. May (1997) Differential gene expression in ripening banana fruit. Plant Physiol. 115: 463–469.

    Article  PubMed  CAS  Google Scholar 

  • Coombe, B.G. and C.R. Hale (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol. 51: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Contento, L. and C. Delfini (1994) Peptidase activity and the ability of wine yeasts to utilise grape must proteins as sole nitrogen source. J. Wine. Res. 5: 113–126.

    Google Scholar 

  • Correa, 1., Polo, M.C., Amigo, L., and M. Ramos (1988) Séparation des protéines des mouts de raisin au moyen de techniques électrophorétiques. Connaiss. Vigne Vin 22: 1–9.

    Google Scholar 

  • Cusask, M. and W.S. Pierpoint (1988) Similarities between sweet protein thaumatin and a pathogenesis-related protein from tobacco. Phytochemistry 27: 3817–3821.

    Article  Google Scholar 

  • Davies, C. and S.P. Robinson (1996) Sugar accumulation in grape berries: cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiol. 111: 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Davies, C., Boss, P.K., and S.P. Robinson (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol. 115: 1155–1161.

    PubMed  CAS  Google Scholar 

  • Dawes, H., Boyes, S., Keene, J., and D. Heatherbell (1994) Protein instability in wines: influence of protein isoelectric point. Am. J. Enol. Vitic. 45: 319–326.

    Google Scholar 

  • De Jong, A.J., Cordewener, J., Schiavo, F.L., Terzi, M., Vandekerckhove, J., Van Kammen, A., and S.C. De Vries (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433.

    PubMed  Google Scholar 

  • Deloire, A., Kraeva, E., Mauro, M.C., Bonnet, E., and A.S. Renault (1996) Immunodetection of chitinase-like and 1,3 ß-glucanase-like proteins secreted in vitro by embryogenic and non-embryogenic cells of grapevines. Vitis 36: 51–52.

    Google Scholar 

  • Derckel, J.P., Legendre, L., Audran, J.C., Haye, B., and B. Lambert (1996) Chitinases of the grapevine (V. vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci. 119: 31–37.

    Article  CAS  Google Scholar 

  • Derckel, J.P., Audran, J.C., Haye, B. Lambert, B., and L. Legendre (1998) Characterization, induction by wounding and salicylic acid, and activity against Botrytis cinerea of chitinases and 13–1,3-glucanases of ripening grape berries. Physiol. Plant. 104: 56–64.

    Google Scholar 

  • Diaz-Perales, A., Collada, C., Blanco, C., Sanchez-Monge, R., Carrillo, T., Aragoncillo, C., and G. Salcedo (1998) Class I chitinases with hevein-like domain, but not class II enzymes, are relevant chestnut and avocado allergens. J. Allergy. Clin. Immunol. 102: 127–133.

    Google Scholar 

  • Dizy, M. and L.F. Bisson (1999) White wine protein analysis by capillary zone electrophoresis. Am. J. Enol. Vitic. 50: 120–127.

    Google Scholar 

  • Dorrestein, E., Ferreira, R.B., Laureano, 0., and A.R. Teixeira (1995) Electrophoretic and FPLC analysis of soluble proteins in four Portugese wines. Am. J. Enol. Vitic. 46: 235–242.

    Google Scholar 

  • Downton, W.J.S. and B.R. Loveys (1978) Compositional changes during grape berry development in relation to abscisic acid and salinity. Aust. J. Plant, Physiol. 5: 415–423.

    Google Scholar 

  • Ferenczy, S. (1966) Étude proteines et substances azotées. Bull OIV 39: 1313–1336.

    Google Scholar 

  • Feuillat, M. and G. Ferrari (1982) Hydrolyse enzymatique des protéines du raisin en vinification. C. R. Séances Acad. Agric. Fr. 68: 1070–1075.

    Google Scholar 

  • Fils-Lycaon, B.R., Wiersma, P.A., Eastwell, K.C., and P. Sautiere (1996) A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol. 111: 269273.

    Google Scholar 

  • Flores, J.H., Heatherbell, D.A., Hsu, J.C., and B.T. Watson (1988) Ultrafiltration ( UF) of White Riesling juice: Effect of oxidation and pre-UF juice treatment on flux, composition and stability. Mn. J. Enol. Vitic. 39: 180–187.

    Google Scholar 

  • Flores, J.H., Heatherbell, D.A., and M.R. McDaniel (1990) Ultrafiltration of wine: Effect of ultrafiltration on White Riesling and Gewurztraminer wine composition and stability. Am. J. Enol. Vitic. 41: 207–214.

    Google Scholar 

  • Francis, I.L., Sefton, M.A., and P.J. Williams (1994) The sensory effects of pre-or post-fermentation thermal processing on Chardonnay and Semillon wines. Am. J. Enol. Vitic. 45: 243–251.

    Google Scholar 

  • Franks, T., He, D.G., and M. Thomas (1998) Regeneration of transgenic V. vinifera L. Sultana plants: genotypic and phenotypic analysis. Molec. Breed. 4: 321–333.

    Google Scholar 

  • Giannakis, C., Bucheli, C.S., Skene, K.G.M., Robinson, S.P., and N.S. Scott (1998) Chitinase and B-1,3glucanase in grapevine leaves: a possible defence against powdery mildew infection. Aust. J. Grape Wine Res. 4: 14–22.

    Google Scholar 

  • Gonzalez-Lara, R., Correa, I., Polo, M.C., Martin-Alvarez, P.J., and M. Ramos (1989) Classification of variety musts by statistical analysis of their electrophoretic protein pattern. Food Chem. 34: 103–110.

    Article  CAS  Google Scholar 

  • Grotewold, E., Athma, P., and T. Peterson (1991) Alternatively spliced products of the maize p gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc. Nat. Acad. Sci. U.S.A. 88: 4587–4591.

    Google Scholar 

  • Grotewold, E., Drummond, B.J., Bowen, B., and T. Peterson (1994) The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavanoid biosynthetic gene subset. Cell 76: 543–553.

    Article  PubMed  CAS  Google Scholar 

  • Harpster, M.H., Lee, K.Y., and P. Dunsmuir (1997) Isolation and characterization of a gene encoding endo-ß1,4-glucanase from pepper (Capsicum annuum L). Plant. Mol. Biol. 33: 47–59.

    Google Scholar 

  • Harrison, M.J., Lawton. M.A., Lamb, C.J., and R.A. Dixon (1991) Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Nat. Acad. Sci. U.S.A. 88: 2515–2519.

    Google Scholar 

  • Heatherbell, D.A., Ngaba, P., Fombin, J., Watson, B., Garcia, Z., Flores, J., and J. Hsu (1984) Recent developments in the application of ultrafiltration and protease enzymes to grape juice and wine processing. Heatherbell, D.A., Bodyfelt, F.W, and S.F. Price (Eds). International Symposium on Cool Climate Viticulture and Enology, 25–28 June, Corvallis, OR. Oregon State University, pp. 418–445.

    Google Scholar 

  • Herbers, K., Meuwly, P., Frommer, W.B., Métraux, J.P., and U. Sonnewald (1996a) Systemic acquired resistance mediated by the ectopie expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8: 793–803.

    PubMed  CAS  Google Scholar 

  • Herbers, K., Meuwly, P., Métraux, J.P., and U. Sonnewald (1996b) Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett, 397: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Herbers, K., Monke, G., Badur, R., and U. Sonnewald (1995) A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: isolation of eDNAs encoding a new class of pathogenesis-related proteins. Plant. Mol. Biol. 29: 1027–1038.

    Google Scholar 

  • Hsu, J.C. and D.A. Heatherbell (1987a) Heat-unstable proteins in wine. I Characterization and removal by bentonite fining and heat treatment. Am. J. Enol. Vitic. 38: 11–16.

    Google Scholar 

  • Hsu, J.C., Heatherbell, D.A., Flores, J.H., and B.T. Watson (1987b) Heat-unstable proteins in grape juice and wine. II. Characterization and removal by ultrafiltration. Am. J. Enol. Vitic. 38: 17–22.

    Google Scholar 

  • Jacobs, A.K., Dry, I.B., and S.P. Robinson (1999) Powdery mildew infection and ethephon treatment induce different pathogenesis-related eDNAs in grapevine. Plant Pathol. 48: 325–336.

    Article  CAS  Google Scholar 

  • Johnson, R. and C.A. Ryan (1990) Wound-inducible potato inhibitor 11 genes: enhancement of expression by sucrose, Plant Mol. Biol. 14: 527–536.

    Google Scholar 

  • Kanellis, A.K, and K.A. Roubelakis-Angelakis (1993) Grape. In: Biochemistry of Fruit Ripening. Seymour G.B., Taylor J.E., Tucker G.A. (Eds). Chapman and Hall, Cambridge, pp. 189–234.

    Chapter  Google Scholar 

  • King, G.J., Turner, V.A., Hussey, C.E. Jr, Wurtele, E.S., and S.M. Lee (1988) Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein. Plant Mol. Biol. 10: 401–412.

    Google Scholar 

  • Koch, J. and E. Sajak (1959) A review and some studies on grape protein. Am. J. Enol. Vitic. 18: 114–123.

    Google Scholar 

  • Kraeva, E., Tesnière, C., Terrier, N., Romieu, C., Sauvage, F.X., Bierne, J., and A. Deloire (1998) Transcription of a ß-1,3-glucanase gene in grape berries in a late developmental period, or earlier after wounding treatments. Vitis 37: 107–111.

    CAS  Google Scholar 

  • Lagace, L.S. and L.F. Bisson (1990) Survey of yeast acid proteases for effectiveness of wine haze reduction. Am. J. Enol. Vitic. 41: 147–155.

    Google Scholar 

  • Lawton, M.A., Dean, S.M., Dron, M., Kooter, J.M., Kragh, K.M., Harrison, M.J., Yu, L., Tanguay, L., Dixon, R.A., and C.J. Lamb (1991) Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol. Biot 16: 235–249.

    Google Scholar 

  • Ledoux, V., Dulau, L., and D. Dubourdieu (1992) Interprétation de l’amélioration de la stabilité protéique des vins au cours de l’évelage sur lies. J. Int. Sci. Vigne Vin. 26: 239–251.

    Google Scholar 

  • Linthorst, H.J.M. (1991) Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10: 123–150.

    Google Scholar 

  • Loulakakis, KA. (1997a) Genomic organization and expression of an osmotin-like gene in V. vinifera L. Vitis 36: 157–158.

    Google Scholar 

  • Loulakakis, KA. (1997b) Nucleotide sequence of a V. vinifera L. eDNA (Accession No. Y10992) encoding for osmotin-like protein. (PGR97–064). Plant Physiol. 113: 1464.

    Google Scholar 

  • Moretti, R.H. and H.W. Berg (1965) Variabilitity among wines to protein clouding. Am. J. Enol. Vitic. 16: 6978.

    Google Scholar 

  • McCollum, T.G., Doostdar, H., Mayer, R.T., and R.E. McDonald (1997) Characterization of chitinases and ß1,3-glucanases in grapefruit flavedo during fruit development. Physiol. Plant. 99: 486–494.

    Google Scholar 

  • Marchai, R., Berthier, L., Legendre, L., Marchal-Delahaut, L., Jeandet, P., and A. Maujean (1998) Effects of Botrytis cinerea infection on the must protein electrophoretic characteristics. J. Agric. Food. Chem. 46: 4945–4949.

    Google Scholar 

  • Maruyama, M., Kadowaki, H., Watanabe, Y., and Y. Tamai (1990) Role of the carbohydrate moiety in phospholipase B from Torulaspora delbrueckii. Agric. Biol. Chem. 54: 599–603.

    Google Scholar 

  • Modra, U. and P..1. Williams (1988) Are proteases active in wines and juices? Aust. Grapegrower Winemaker 292: 42–46.

    Google Scholar 

  • Moine-Ledoux, V. and D. Dubourdieu (1988) Interprétation moléculaire de 1 amélioration de la stabilité protéique des vins blancs au cours de leur élevage sur lies. Revue des Oenologues. 86: 11–14.

    Google Scholar 

  • Morena-Arribas, M.V., Cabello, F., Pollo, M.C., Martin-Alvarez, P.J., and E.J. Pueyo (1999) Assessment of the native electrophoretic analysis of total grape must proteins for the characterization of V. vinifera L. cultivars. J. Agric. Food Chem. 47: 114–120.

    Google Scholar 

  • Murphey, J.M., Spayd, S.E., and J.R. Powers (1989) Effect of grape maturation on soluble protein characteristics of Gewürztraminer and White Riesling juice and wine. Am. J. Enol. Vitic. 40: 199–207.

    Google Scholar 

  • Nairn, C.J., Niedz, R.P., Nearn, C.J., Osswald, W.F., and R.T. Mayer (1997) cDNA cloning and expression of a class 11 acidic chitinase from sweet orange. Biochimica et Biophysica Acta–Gene Structure and Expression 1351: 22–26

    Google Scholar 

  • Ngaba-Mbiakop, P.R. (1981) Investigation of Methods for Determination and Prevention of Protein Instability in Wines. Oregon State University, Ph.D. Thesis, USA.

    Google Scholar 

  • Pactzold, M., Dulau, L., and D. Dubourdieu (1990) Fractionnement et characterisation des glycoprotéines dans les mouts de raisins blancs. J. Int. Sci. Vigne Vin 24: 13–28.

    Google Scholar 

  • Pellerin, P., Waters, E.J., Brillouet, J.-M., and M. Moutounct (1994) Effet de polysaccharides sur la formation de trouble protéique dans un vin blanc. J. Int. Sci. Vigne Vin 28: 213–225.

    Google Scholar 

  • Peng, Z., Pocock, K.F., Waters, E.J., Francis, I.L., and P.J. Williams (1997) Taste properties of grape (V. vinifera) pathogenesis-related proteins isolated from wine. J. Agric. Food Chem. 45: 4639–4643.

    Google Scholar 

  • Peri, C., Riva, M., and P. Decio (1988) Crossflow membrane filtration of wines: Comparison of performance of ultrafiltration, microfiltration, and intermediate cut-off membranes. Am. J. Enol. Vitic. 39: 162–168.

    Google Scholar 

  • Pocock, K.F., Hayasaka, Y., Peng, Z., Williams, P.J., and E.J. Waters (1998a) The effect of mechanical harvesting and fruit transport on the concentration of haze forming proteins in juice. Aust. J. Grape Wine Res. 4: 23–29.

    Google Scholar 

  • Pocock, K.F. and E.J. Waters (1998b) The effect of mechanical harvesting and transport of grapes, and juice oxidation, on the protein stability of wines. Aust. J. Grape Wine Res. 4: 136–139.

    Google Scholar 

  • Pocock, K.F., Hayasaka, Y., McCarthy, M., and E.J. Waters (2000) Thaumatin-like proteins and chitinases, the haze forming proteins of wine, accumulate during ripening of grape (V. vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food Chem. 48: 1637–1643.

    Google Scholar 

  • Polo, M.C., Caceres, 1., Palop, L., Dizy, M., Pueyo, E., and P.J. Martin-Alvarez (1989) Study of the protein fraction of grape musts by high performance liquid chromatography and electrophoretical techniques. Variety differentiation. Charalambous, G., (Ed.). 6th International Flavour Conference, Rethymnon, Crete, Greece, 5–7 July 1989. Crete, Greece. Elsevier, pp. 87–101.

    Google Scholar 

  • Pressey, R. (1997) Two isoforms of NP24 - a thaumatin-like protein in tomato fruit. Phytochemistry 44: 12411245.

    Google Scholar 

  • Pueyo, E., Dizy, M., and M.C. Polo (1993) Varietal differentiation of must and wines by means of protein fraction. Am. J. Enol. Vitic. 44: 255–260.

    Google Scholar 

  • Rankine, B. (1989) Making Good Wine: a Manual of Winemaking Practice for Australia and New Zealand. Melbourne: Sun Books.

    Google Scholar 

  • Renault, A.S., Deloire, A., and J. Bierne (1996) Pathogenesis-related proteins in grapevines induced by salicylic acid and Botrytis cinema. Vitis 35: 49–52.

    CAS  Google Scholar 

  • Robinson, S.P., Jacobs, A.K., and LB. Dry (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–728.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, R.A., Tikhonova, I., Bordelon, B.P., Hasegawa, PM., and R.A. Bressan (1998) Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defence response during fruit ripening in grape. Plant Physiol. 117: 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Santoro, M. (1995) Fractionation and characterization of must and wine proteins. Am. J. Enol. Vitic. 46: 250254.

    Google Scholar 

  • Semino, G.A., Restani, P., and P. Cerletti (1985) Effect of bound carbohydrate on the action of trypsin on lupin seed glycoproteins. J. Agric. Food Chem. 33: 196–199.

    Google Scholar 

  • Seymour, T.A., Preston, J.F., Wicker, L., Lindsay, J.A., Wei, C., and M.R. Marshall (1991) Stability of pectinesterases of Marsh White grapefruit pulp. J. Agric. Food Chem. 39: 1075–1079.

    Google Scholar 

  • Singh, N.K., Bracker, C.A., Ilasegawa, P.M., Handa, A.K., Buckel, S., Hermodson, M.A., Pfankoch, E., Reg-nier, F.E., and R.A. Bressan (1987) Characterization of osmotin. A thaumatin-like protein associated with osmotic adaption in plant cells. Plant Physiol. 85: 529–536.

    Google Scholar 

  • Skriver, K. and J. Mundy (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.

    PubMed  CAS  Google Scholar 

  • Smart, R.E. and B.C. Coombe (1983) Water relations of grapevines. In: Waters Deficits and Plant Growth, Kozlowski, T.T., (Ed.). Academic Press: New York, Vol. 7: 137–196.

    Google Scholar 

  • Somers, T.C. and G. Ziemelis (1973a) Direct determination of wine proteins. Am. J. Enol. Vitic. 24: 47–50 Somers, T.C. and G. Ziemelis (1973b) The use of gel column analysis in evaluation of bentonite fining procedures. Am. J. Enol. Vitic. 24: 51–54.

    Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., and B. Fritig (1993) Plant“pathogenesis-related’ proteins and their role in defence against pathogens. Biochimie 75: 687–706.

    Article  PubMed  CAS  Google Scholar 

  • Tattersall, D.B., van Heeswijck, R., and P.B. Hoj (1997) Identification and characterisation of a fruit-specific Thaumatin-like protein which accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in V. vinifera. Plant Physiol. 114: 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Tattersall, D.B. (1999) Identification and Characterisation of Vitis vinifera Pathogenesis-related Proteins that Accumulate during Berry Ripening. Adelaide University Ph.D. Thesis, Adelaide, Australia, pp. 158.

    Google Scholar 

  • Tsukaya, 11., Ohshima, T., Naito, S., Chino, M., and Y. Komeda (1991) Sugar-dependent expression of the chs-a gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol. 97: 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  • Voilley, A., Lamer, C., Dubois, P., and M. Feuillat (1990) Influence of macromolecules and treatments on the behaviour of aroma compounds in a model wine. J. Agric. Food Chem. 38: 248–251.

    Google Scholar 

  • Waters, E.J. (1991) Heat Unstable Wine Proteins and their Interactions with Wine Polysaccharides. Adelaide University Ph.D. Thesis, Adelaide, Australia, pp. 173.

    Google Scholar 

  • Waters, E.J., Wallace, W., and P.J. Williams (1990) Peptidases in Winemaking. Williams, P.J., Davidson, D., Lee, T.H., (Eds). Seventh Australian Wine Industry Technical Conference, 13–17 August 1989, Adelaide, SA. Adelaide: Australian Industrial Publishers: 186–191.

    Google Scholar 

  • Waters, E.J., Wallace, W., and P.J. Williams (1991) Heat haze characteristics of fractionated wine proteins. Am. J. Enol. Vitic. 42: 123–127.

    Google Scholar 

  • Waters, E.J, Wallace, W., and P.J. Williams (1992a) The identification of heat-unstable wine proteins and their resistance to peptidases. J. Agric. Food. Chem. 40: 1514–1519.

    Google Scholar 

  • Waters, E.J., Williams, P.J., Wallace, W., Tate, ME, Pellerin, P., and J-M. Brillouet (1992b) The role of a wine polysaccharide in protein instability. Stockley, C.S., Johnstone, R.S., Leske, P.A., Lee, T.H., (Eds). Eighth Australian Wine Industry Technical Conference, October 1992, Melbourne, Vic. Adelaide: Winetitles, pp. 170–172.

    Google Scholar 

  • Waters, E.J., Wallace, W., Tate, M.E., and P.J. Williams (1993) Isolation and partial characterization of a natural haze protective factor from wine. J. Agric. Food Chem. 41: 724–730.

    Google Scholar 

  • Waters, E.J., Pellerin, P., and J-M. Brillouet (1994a) A Saccharomyces mannoprotein that protects wine from protein haze. Carbohyd. Polym. 23: 185–191.

    Google Scholar 

  • Waters, E.J., Pellerin, P., and J-M. Brillouet (1994b) A wine arabinogalactan-protein that reduces heat-induced wine protein haze. Biosci. Biotech. Biochem. 58: 43–48.

    Google Scholar 

  • Waters, E.J., Peng, Z., Pocock, K.F., and P.J. Williams (1995a) Proteins in white wine I. Procyanidin occurrence in soluble proteins and insoluble protein hazes and its relationship to protein instability. Aust. J. Grape Wine Res. 1: 86–93.

    Google Scholar 

  • Waters, E.J., Peng, Z., Pocock, K.F., and P.J. Williams (1995b) Proteins in white wine II. Their resistance to proteolysis is not due to either phenolic association or glycosylation. Aust. J. Grape Wine Res. 1: 94–99.

    Article  CAS  Google Scholar 

  • Waters, E.J., Shirley, N.J., and P.J. Williams (1996) Nuisance proteins of wine are grape pathogenesis-related proteins. J. Agric. Food Chem. 44: 3–5.

    Google Scholar 

  • Waters, E.J., Hayasaka, Y., Tattersall, D.B., Adams, K.S., and P.J. Williams (1998) Sequence analysis of grape (V. vinifera) berry chitinases that cause haze formation in wines. J. Agric. Food Chem. 45: 4950–4957.

    Google Scholar 

  • Yokotsuka, K., Ebihara, T., and T. Sato (1991) Comparison of soluble proteins in juice and wine from Koshu grapes. J. Ferment. Bioeng. 71: 248–253.

    Google Scholar 

  • Yu, L-X., Djebrouni, M., Chamberland, H., La Fontaine, 1.G., and Z. Tabaeizadeh (1998) Chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. J. Plant Physiol. 153: 745–753.

    CAS  Google Scholar 

  • Yun, D.J., Paino D’Urzo, M., Abad, L., Takeda, S., Salzman, R., Chen, Z.T., Lee, H., Hasegawa, PM., and RA. Bressan (1996) Novel osmotically induced antifungal chitinascs and bacterial expression of an active recombinant isoform. Plant Physiol. 111: 1219–1225.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tattersall, D.B. et al. (2001). Pathogenesis Related Proteins — Their Accumulation in Grapes during Berry Growth and Their Involvement in White Wine Heat Instability. Current Knowledge and Future Perspectives in Relation to Winemaking Practices. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics