Skip to main content

Abstract

Nitrogen plays the most important role of all nutrients in plant growth. It is the plant nutrient most likely to be deficient in grapevine although it is the nutrient most commonly applied to vineyards to increase productivity. Considerable new information has been obtained over the past twenty years on the uptake, translocation, distribution, partitioning, and storage of nitrogenous compounds in grapevines. Considerable new information has also been developed on synthesis and degradation of amino acids and other nitrogenous compounds in grapevines and the enzymes associated with these reactions. However, in spite of the wide-spread usage of nitrogen fertilization in vineyards, the physiological and biochemical effects of nitrogen on shoot and fruit growth, fruit bud initiation, flowering, fruitset, and crop yield are still poorly understood. Grapevines differ from herbaceous plants and many other woody plants in that they do not form terminal buds at the end of shoots, but they can continue to grow late into the season. The individual flower parts are formed after budbreak, unlike most deciduous fruit trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M.P., Vance C.P., Heichel G.H., and S.S. Miller (1989) Purification and characterization of NADHglutamate synthase from alfalfa root nodules. Plant Physiol. 90: 351–358.

    PubMed  CAS  Google Scholar 

  • Avila, C., Marquez A.J., Pajuelo P., Cannel) M.E., Wallsgrove R.M., and B.G. Forde (1993) Cloning and sequence analysis of a cDNA for barley ferredoxin-dependent glutamate synthase and molecular analysis of photorespiratory mutants deficient in the enzyme. Planta 189: 475–483.

    PubMed  CAS  Google Scholar 

  • Baker, P., Britton L., Engel P., Farrants G., Lilley K., Rice D., and T. Stillman (1992) Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins: Structure, Function and Genetics 12: 75–86.

    CAS  Google Scholar 

  • Benachenhou-Lahfa, N,, Forterre P., and B. Labedan (1993) Evolution of glutamate dehydrogenase genes: Evidence for two paralogous protein families and unusual branching patterns of the archaebaeteria in the universal tree of life. J. Mol. Evol. 36: 335–346.

    Google Scholar 

  • Bennett, M.J. and.I.V. Cullimore (1989) Glutamine synthetase isoenzymes of Phaseolus vulgaris L.: subunit composition in developing root nodules and plumules. Planta 179: 433–440.

    CAS  Google Scholar 

  • Cammaerts, D. and M. Jacobs (1983) A study of the polymorphism and the genetic control of the glutamate dehydrogenase isoenzymes in Arabidopsis thaliana. Plant Sci. Lett. 31: 65–73.

    CAS  Google Scholar 

  • Cammaerts, D. and M. Jacobs (1985) A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta 163: 517–526.

    CAS  Google Scholar 

  • Campbell, W.H. (1996) Nitrate reductase biochemistry comes of age. Plant Physiol. 111: 355–361.

    PubMed  CAS  Google Scholar 

  • Conradie, W.J. (1991) Translocation and storage of nitrogen by grapevines as affected by time of application. Proc. Intern. Symp. Nitrogen in Grape and Wine, Seattle, WA, pp. 32–42.

    Google Scholar 

  • Coschigano K.T., Melo-Oliveira R., Lim J., and G.M. Coruzzi (1998) Arabidopsis gls mutants and distinct FdGOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752.

    Google Scholar 

  • Creasy G.L. and P.J. Breen (1997) Evidence for ferredoxin glutamate synthase in grape shoot tissues. Vitis 36: 207–208.

    CAS  Google Scholar 

  • Dintchcff, D., Stoeff K., Peschakoff G., and E. Kolarowa (1964) Untersuchungen uber die Stickstoffernahrung der Weinrebe unter Anweundung des stabilen Stickstoffsotops 15N. Vitis 4: 347–356.

    Google Scholar 

  • Edwards, J.W. and G.M. Coruzzi (1989) Photorespiration and light act in concert to regulate the expression of the nuclear gene for chloroplast glutamine synthetase. Plant Cell 1: 241–248.

    PubMed  CAS  Google Scholar 

  • Ficarelli, A., Tassi F., and F.M. Restivo (1999) Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia. Plant Cell Physiol. 40: 339–342.

    PubMed  CAS  Google Scholar 

  • Fricke, W. and E. Pahlich (1992) Malate: a possible source of error in the NAD glutamate dehydrogenase assay. J. Exp. Bot. 43: 1515–1518.

    CAS  Google Scholar 

  • Ghisi, R., Jannini B., and C. Passera (1984) Changes in the activities of enzymes involved in nitrogen and sulphur assimilation during leaf and berry development of Vitis vinifera. Vitis 23: 257–267.

    CAS  Google Scholar 

  • Givan, C.V. (1979) Metabolic detoxification of ammonia in tissues of higher plants. Phytochemistry 18: 375–382.

    CAS  Google Scholar 

  • Goto, S., Akagawa T., Kojima S., Hayakawa T., and T. Yamaya (1998) Organization and structure of NADFIdependent glutamate synthase gene from rice plants. Biochim. Biophys. Acta 1387: 298–308.

    Google Scholar 

  • Gregerson, R.G., Miller S.S., Twary S.N., Gantt J.S., and C.P. Vance (1993) Molecular characterization of NADH-glutamate synthase from alfalfa nodules. Plant Cell 5: 215–226.

    PubMed  CAS  Google Scholar 

  • Hayakawa, T., Kamachi K., Oikawa M., Ojima K., and T. Yamaya (1990) Response of glutamine synthetasc and glutamate synthase isoforms to nitrogen sources in rice cell cultures. Plant Cell Physiol. 31: 1071–1077.

    CAS  Google Scholar 

  • Hayakawa, T., Yamaya T., Kamachi K., and K. Ojima (1992) Purification, characterization, and immunological properties of NADH-dependent glutamate synthase from rice cell cultures. Plant Physiol. 98: 1317–1322.

    PubMed  CAS  Google Scholar 

  • Hayakawa, T., Yamaya T., Mae T., and K. Ojima (1993) Changes in the content of two glutamate synthase proteins in spikelets of rice plants during ripening. Plant Physiol. 101: 1257–1262.

    PubMed  CAS  Google Scholar 

  • Haynes, R.J. (1986) The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Mineral Nitrogen in the Plant-Soil System, R.J. Haynes (Ed.). Academic Press, London, pp. 52–126.

    Google Scholar 

  • Hecht, U., Oelmuller R., Schmidt S., and H. Mohr (1988) Action of light, nitrate and ammonium on the levels of NADH- and ferredoxin-dependent glutamate synthases in the cotyledons of mustard seedlings. Planta 175: 130–138.

    CAS  Google Scholar 

  • Huber, S.C., Bachmann M., and J.L. Huber (1996) Post-translational regulation of nitrate reductase activity: a role for Cat’ and 14–3–3 proteins. Trends in Plant Science 1: 432–438.

    Google Scholar 

  • Hunter, J.J. and H.P. Ruffner (1997) Diurnal and seasonal changes in nitrate reductase activity and nitrogen content of grapevines: effect of canopy management. Vitis 36: 1–6.

    CAS  Google Scholar 

  • Kato, T. (1986) Nitrogen metabolism and utilization in Citrus. Hort. Rev. 8: 181–216.

    Google Scholar 

  • Korcak, R.F. (1989) Variation in nutrient requirements of blueberries and other calcifuges. HortScience 24: 573–578.

    Google Scholar 

  • Lam, H.M., Coschigano K.T., Oliveira I.C., Melo-Oliveira R., and G.M. Coruzzi (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 569–593.

    PubMed  CAS  Google Scholar 

  • Lam, H.M., Coschigano K., Schultz C., Melo-Oliveira R., Tjaden G., Oliveira I., Ngai N., Hsieh M.H., and G.M. Coruzzi (1995) Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7: 887–898.

    PubMed  CAS  Google Scholar 

  • Lea, P.J. (1999) Nitrogen metabolism. In: Plant Biochemistry and Molecular Biology, Lea P.J., and R.C. Lee-good (lids). Wiley, New York, pp. 163–188.

    Google Scholar 

  • Lea, P.J., Blackwell R.D., Chen F-L., and U. Hecht (1990) Enzymes of ammonia assimilation. In: Methods in Plant Biochemistry, vol. 3, Lea P.J. (Ed.). Academic Press, London, pp. 257–276.

    Google Scholar 

  • Lea, P.J., Blackwell R.D., and K.W. Joy (1992) Ammonia assimilation in higher plants. In: Nitrogen Metabolism of Plants, vol. 3, Mengel K. and P.J. Pilbeam (Eds). Clarendon Press, Oxford, pp. 153–156.

    Google Scholar 

  • Lea, P.J. and S. Ridley (1989) Glutamine synthetase and its inhibition. In: Herbicides and Plant Metabolism, Dodge A.D. (Ed.). Cambridge University, Cambridge, UK, pp. 137–170.

    Google Scholar 

  • Leon, E., P. De La Haba, and J.M. Maldonado (1990) Changes in the levels of enzymes involved in ammonia assimilation during the development of Phaseolus vulgaris seedlings. Effects of exogenous ammonia. Physiol. Plant. 80: 20–26.

    CAS  Google Scholar 

  • Li, M-G., R. Villemur, P.J. Hussey, C.D. Silflow, J.S. Gantt, and D.P. Snustad (1993) Differential expression of six glutamine synthetase genes in Zea mays. Plant. Mol. Biol. 23: 401–407.

    PubMed  CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1990a) Intracellular localization and properties of NADHglutamate dehydrogenase from Vitis vinifera L: purification and characterization of the major leaf isoenzyme. J. Exp. Bot. 41: 1223–1230.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1990b) Immunocharacterization of NADH-glutamate dehydrogenase from Vitis vinifera L. Plant Physiol. 94: 109–113.

    PubMed  CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1991) Plant NAD(H)-glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol. 97: 104–111.

    PubMed  CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1992) Ammonium-induced increase in NADH-glutamate dehydrogenase activity is caused by de novo synthesis of the a-subunit. Planta 187: 322–327.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1996a) The seven NAD(H)-glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities. Physiol. Plant. 96: 29–35.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1996b) Characterization of Vitis vinifera L. glutamine synthetase and molecular cloning of cDNAs for the cytosolic enzyme. Plant Mol. Biol. 31: 983–992.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (1997) Molecular cloning and characterization of cDNAs encoding for ferredoxin-dependent glutamate synthase from Vitis vinifera. Physiol. Plant. 101: 220–228.

    CAS  Google Scholar 

  • Loulakakis, K.A. and K.A. Roubelakis-Angelakis (2000) Enzymes of ammonia assimilation in Vitis vinifera. Acta Horf. 526: 209–223.

    CAS  Google Scholar 

  • Loulakakis, K.A. Roubelakis-Angelakis K.A., and A.K. Kanellis (1994) Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening. Plant Physiol. 106: 217–222.

    PubMed  CAS  Google Scholar 

  • Loulakakis, K.A. Roubelakis-Angelakis K.A., and A.K. Kanellis (1996) Isolation of functional RNA from grapevine tissues poor in nucleic acid content. Am. J. Enol. Vitic. 47: 181–185.

    CAS  Google Scholar 

  • Loyola-Vargas, V.M. and E. Sanchez de Jimenez (1984) Differential role of glutamate dehydrogenase in nitrogen metabolism of maize tissues. Plant Physiol. 76: 536–540.

    PubMed  CAS  Google Scholar 

  • Matoh, T. and E. Takahashi (1982) Changes in the activities of ferredoxin-and NADH-glutamate synthase during seedling development of peas. Planta 154: 289–294.

    CAS  Google Scholar 

  • Melo-Oliveira R., Oliveira I.C., and G.M. Coruzzi (1996) Arabidopsis mutant analysis and gene regulation define a nonrcdundant role for glutamate dehydrogenase in nitrogen assimilation. Proc. Natl. Acad. Sci. USA 93: 4718–4723.

    Google Scholar 

  • Mendel, R.R. and B. Stallmeyer (1995) Molybdenum cofactor (nitrate reductase) biosynthesis in plants: First molecular analysis. In: Current Plant Science and Biotechnology in Agriculture, Vol. 22: Current Issues in Plant Molecular and Cellular Biology, Terzi M.R.C. and A. Falavigna (Eds). Kluwer, Dordrecht, Netherlants, pp. 577–582.

    Google Scholar 

  • Miflin, B.J. and P..1. Lea (1976) The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885.

    CAS  Google Scholar 

  • Miflin, B.J. and P.J. Lea (1980) Ammonia assimilation. In: The Biochemistry of Plants, vol. 5, Miflin B.J. (Ed.). Academic Press, New York, pp. 169–202.

    Google Scholar 

  • Nalbantoglu, B., Hirasawa M., Moomaw C., Nguyen H., Knaff D.B., and R. Allen (1994) Cloning and sequencing of the gene encoding spinach ferredoxin-dependent glutamate synthase. Biochim. Biophys. Acta 1183: 557–561.

    Google Scholar 

  • Oaks, A. (1994) Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72: 739–750.

    CAS  Google Scholar 

  • Oaks, A. and B. Hirel (1985) Nitrogen metabolism in roots. Annu. Rev. Plant Physiol. 36: 345–365.

    CAS  Google Scholar 

  • Oaks, A. and D.M. Long (1992) Nitrate assimilation in root systems: with special reference to Zea mays. In: Nitrogen Metabolism in Plants, Pilbeam D.J. and K. Mengel (Eds): Oxford University Press, New York, pp. 91–102.

    Google Scholar 

  • Ochs, G., Schock G., Trischler M., Kosemund K., and A. Wild (1999) Complexity and expression of the glutaminc synthetase multigene family in the amphidiploid crop Brassica napus. Plant Mol. Biol. 39: 395–405.

    CAS  Google Scholar 

  • Oliveira, I.C. and G.M. Coruzzi (1999) Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiol. 121: 301–309.

    PubMed  CAS  Google Scholar 

  • Pahlich, E. (1996) Remarks concerning the dispute related to the function of plant glutamate dehydrogenase: commentary. Can. J. Bot. 74: 512–516.

    Google Scholar 

  • Perez, J.R. and W.M. Kliewer (1978) Nitrate reduction in leaves of grapevine and other fruit trees. J. Am. Soc. Hort. Sci. 103: 246–250.

    CAS  Google Scholar 

  • Perez, J.R. and W.M. Kliewer (1982) Influence of light regime and nitrate fertilization on nitrate reductase activity and concentrations of nitrate and arginine in tissues of three cultivars of grapevines. Am. J. Enol. Vitic. 33: 86–93.

    CAS  Google Scholar 

  • Pesole, G., Gissi C., Lanave C., and C. Saccone (1995) Glutamine synthetase gene evolution in Bacteria. Mol. Biol. Evol. 12: 189–197.

    PubMed  CAS  Google Scholar 

  • Peterman, T.K. and H.M Goodman (1991) The glutamine synthetase gene family of Arabidopsis thaliana: Light-regulation and differential expression in leaves, roots and seeds. Mol. Gen. Genet. 230: 145–154.

    PubMed  CAS  Google Scholar 

  • Primikirios, N.J. and K.A. Roubelakis-Angelakis (1999) Cloning and expression of an arginine decarboxylase eDNA from Vitis vinifera L. cell-suspension cultures. Planta 208: 574–582.

    PubMed  CAS  Google Scholar 

  • Primikirios, N.J., Loulakakis K.A., Lefort F., and K.A. Roubelakis-Angelakis (2000) Nitrogen metabolism and recycling genes cloned from Vitis vinifera L. Proc. 7“’ Intern. Symp. on Grapevine Genetics and Breeding, Montpellier, France, pp. 199–207.

    Google Scholar 

  • Purnell, M.P., Stewart G.R., and J.R. Botella (1997) Cloning and characterization of a glutamate dehydrogenase eDNA from tomato (Lycopersicon esculentum L.). Gene 186: 249–254.

    PubMed  CAS  Google Scholar 

  • Redinbaugh, M.G. and W.H. Campbell (1993) Glutamine synthetase and ferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primary response to nitrate. Plant Physiol. 101: 1249–1255.

    PubMed  CAS  Google Scholar 

  • Rees, D. and M. Adams (1995) Hyperthermophiles: taking the heat and loving it. Structure 3: 251–254.

    PubMed  CAS  Google Scholar 

  • Robinson, S.A., Slade A.P., Fox G.G., Phillips R., Ratcliffe G.R., and G.R. Stewart (1991) The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol. 95: 509–516.

    PubMed  CAS  Google Scholar 

  • Roubelakis-Angelakis, K.A. (1991) Amino acid and protein metabolism in Vitis spp. Proc. Intern. Symp. Nitrogen in Grape and Wine, Seattle, WA, pp. 23–31.

    Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1978a) Enzymes of Krebs-Henseleit cycle in Vitis vinifera L. I. Ornithine carbaloyltransferase: isolation and some properties. Plant Physiol. 62: 337–339.

    Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1978b) Enzymes of Krebs-Henseleit cycle in Vitis vinifera L. 11. Arginosuccinate synthetase and lyase. Plant Physiol. 62: 344–347.

    Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1978e) Enzymes of Krebs-Henseleit cycle in Vitis vinifera L. III. In vivo and in vitro studies of arginase. Plant Physiol. 62: 344–347.

    Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1983) Ammonia assimilation in Vitis vinifera L.: II. Leaf and root glutamine synthetase. Vitis 22: 299–305.

    CAS  Google Scholar 

  • Roubelakis-Angelakis, K.A. and W.M. Kliewer (1992) Nitrogen metabolism in grapevine. Hortic. Rev. 14: 407–452.

    CAS  Google Scholar 

  • Roubelakis-Angelakis, K.A., Loulakakis K.A., and A.K. Kanellis (1991) Synthesis and regulation of glutamate dehydrogenase in grapevine callus. Intern. Meet. on “Nitrogen Metabolism in Grapes”, Seattle, Washington, June 1991, pp. 306–311.

    Google Scholar 

  • Sakakibara, H., Fujii K., and T. Sugiyama (1995) Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol. 36: 789–797.

    PubMed  CAS  Google Scholar 

  • Sakakibara, H., Kawabata S., Takahashi H., Hase T., and T. Sugiyama (1992) Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxindependent glutamate synthase in photosynthetic and non-photosynthetic tissues. Plant Cell Physiol. 33: 49–58.

    CAS  Google Scholar 

  • Sakakibara, H., Watanabe M., Hase T., and T. Sugiyama (1991) Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf J. Biol. Chem. 266: 2028–2035.

    PubMed  CAS  Google Scholar 

  • Schaller, K. (1984) Untersuchungen zur nitratreduktaseativitat in reben. Mitteil. Kiostern. Rebe Wein 34: 235–240.

    CAS  Google Scholar 

  • Scrutton, N.S., Berry A., and R. Perham (1990) Redesign of a coenzyme specificity of a dehydrogenase by protein engineering. Nature (London) 343: 38–43.

    CAS  Google Scholar 

  • Singh, R.P. and H.S. Srivastava (1982) Glutamate dehydrogenase activity and assimilation of inorganic nitrogen in maize seedlings. Biochem. Physiol. Pflanzen 177: 633–642.

    CAS  Google Scholar 

  • Singh, R.P. and H.S. Srivastava (1983) Regulation of glutamate dehydrogenase activity by amino acids in maize seedlings. Physiol. Plant. 57: 549–554.

    CAS  Google Scholar 

  • Siegel, L.M. and J.Q. Wilkerson (1989) Structure and function of spinach ferredoxin-nitrite reductase. In: Molecular and Genetic Aspects of Nitrate Assimilation, Wray J.L. and J.R. Kinghom (Eds). Oxford Science, Oxford, pp. 263–283.

    Google Scholar 

  • Sivasankar, S. and A. Oaks (1996) Nitrate assimilation in higher plants-The effect of metabolites and light. Plant Physiol. Biochem. 34: 609–620.

    CAS  Google Scholar 

  • Somerville, C.R. and W.L. Ogren (1980) Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286: 257–259.

    CAS  Google Scholar 

  • Srivastava, H.S. and R.P. Singh (1987) Role and regulation of L-glutamate dehydrogenase activity in higher plants. Phytochemistry 26: 597–610.

    CAS  Google Scholar 

  • Stanford, A.C., Larsen K., Barker D.G., and J.V. Cullimore (1993) Differential expression within the gluta- mine synthetase gene family of the model legume Medicago truncatula. Plant Physiol. 103: 73–81.

    PubMed  CAS  Google Scholar 

  • Stewart, G.R., Mann A.F., and P.A. Fentem (1980) Enzymes of glutamate formation: glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. In: The Biochemistry of Plants, vol 5, Miflin B.J. (Ed.). Academic Press, New York, pp. 271–327.

    Google Scholar 

  • Sukanya, R., Li M-G., and D.P. Snustad (1994) Root-and shoot-specific responses of individual glutamine synthetase genes of maize to nitrate and ammonium. Plant Mol. Biol. 26: 1935–1946.

    CAS  Google Scholar 

  • Suzuki, A. and S. Rothstein (1997) Structure and regulation of ferredoxin-dependent glutamate synthase from Arabidopsis thaliana: Cloning of eDNA, expression in different tissues of wild type and gitS mutant strains, and light induction. Eur. J. Biochem. 243: 708–718.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Vidal J., and P. Gadal (1982) Glutamate synthase isoforms in rice. Immunological stydies of enzymes in green leaf, etiolated leaf, and root tissues. Plant Physiol. 70: 827–832.

    PubMed  CAS  Google Scholar 

  • Syntichaki, K.M., Loulakakis K.A., and K.A. Roubelakis-Angelakis (1996) The amino acid sequence similarity of plant glutamate dehydrogenase with the extremophilic archaeal enzyme conforms to its stress related function. Gene 168: 87–92.

    PubMed  CAS  Google Scholar 

  • Temple, S.J., Kunjibettu S., Roche D., and C. Sengupta-Gopalan (1996) Total glutamine synthetase activity during soybean nodule development is controlled at the level of transcription and holoprotein turnover. Plant Physiol. 112: 1723–1733.

    PubMed  CAS  Google Scholar 

  • Temple, S.J., Heard J., Ganter G., Dunn K., and C. Sengupta-Gopalan (1995) Characterization of a nodule-enhanced glutamine synthetase from alfalfa: nucleotide sequence, in situ localization and transcript analysis. Mol. Plant. Microbe Interact. 8: 218–227.

    PubMed  CAS  Google Scholar 

  • Titus, J.S. and S. Kang (1982) Nitrogen metabolism, translocation, and recycling in apple trees. Hortie. Rev. 4: 204–246.

    CAS  Google Scholar 

  • Trepp, G.B., van de Mortel M., Yoshioka H., Miller S.S., Samac D.A., Gantt J.S., and C.P. Vance (1999) NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. Plant Physiol. 119: 817–828.

    PubMed  CAS  Google Scholar 

  • Turano, F.J., Dashner R., Upadhyaya A., Caldwell C.R., and G. Bauchan (1998) Characterization of the glutamate dehydrogenase isoenzyme system in germinating soybean. Plant Sci. 135: 137–148.

    CAS  Google Scholar 

  • Turano F.I., Thakkar S.S., Fang T., and J.M. Weiemann (1997) Characterization and expression of NAD(H)dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol. 113: 1329–1341.

    PubMed  CAS  Google Scholar 

  • Turano, F.J. and M.J. Muhitch (1999) Differential accumulation of ferredoxin-and NADH-dependent glutamate synthase activities, peptides, and transcripts in developing soybean seedlings in response to light, nitrogen, and nodulation. Physiol. Plant. 107: 407–418.

    CAS  Google Scholar 

  • Watanabe, M., Nakayama H., Watanabe Y., and N. Shimada (1992) Induction of a specific isoenzyme of glutamate dehydrogenase during isolation and the first 48 h of culture of Brassica napus leaf protoplasts. Physiol. Plant. 86: 231–235.

    CAS  Google Scholar 

  • Wermelinger, B. (1991) Nitrogen dynamics in grapevine: Physiology and modeling. Proc. Intern. Symp. Nitrogen in Grape and Wine, Seattle, WA. pp. 23–31.

    Google Scholar 

  • Williams, L.E. (1991). The effect of rootstock on the partitioning of dry weight nitrogen and potassium and root distribution of Cabernet Sauvignon grapevines. Am. J. Enol. Vitic. 42: 113–117.

    Google Scholar 

  • Yamaya, T., Oaks A., and H. Matsumoto (1984) Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. Plant Physiol. 76: 1009–1013.

    PubMed  CAS  Google Scholar 

  • Zehnacker, C., Becker T.W., Suzuki A., Carrayol E., Caboche M., and B. Hire! (1992). Purification and properties of tobacco ferredoxin-dependent glutamate synthase, and isolation of corresponding cDNA clones. Light-inducibility and organ-specificity of gene transcription. Planta 187: 266–274.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Loulakakis, K.A., Roubelakis-Angelakis, K.A. (2001). Nitrogen Assimilation in Grapevine. In: Roubelakis-Angelakis, K.A. (eds) Molecular Biology & Biotechnology of the Grapevine. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2308-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2308-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2310-7

  • Online ISBN: 978-94-017-2308-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics