Skip to main content

Inter-Comparisons between Numerical Integrations and Analytical Theory for the Solar System

  • Conference paper
Modern Celestial Mechanics: From Theory to Applications

Abstract

Firstly we carry out the comparison of the precision evolution with respect to cpu time of integrators applied to the two-body problem with increasing eccentricity. The integrators used in this part are: The Runge-Kutta-Nystrom method RKN12(10), Radau and Bulirsch-Stoer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bulirsch, R. and Stoer, J.: 1966, ‘Numerical Treatment of Ordinary Differential equations by Extrapolation Methods’ Num.Math. 8, pp. 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Everhart, E.: 1985, ‘An efficient integrator that uses Gauss-Radau spacings’, in Dynamics of comets: Their Origin and Evolution, eds A.Carusi and G.B. Valsecchi, pp. 185–202.

    Google Scholar 

  • Fehlberg, E.: 1974, ‘Classical Eighth-and Lower-order Runge-Kutta-Nystrom formulas with stepsize control for special second-order differential equations’, NASA TR R-432.

    Google Scholar 

  • Grobner, W.: 1967, ‘Die Lie-Reihen und ihre Anwendungen’, VEB Deutscher Verlar der Wissenschaften, Berlin.

    Google Scholar 

  • Hanslmeier, A. and Dvorak, R.: 1984, ‘Numerical integration with Lie-series’, Astron. Astrophys 132, pp. 203–207.

    MathSciNet  ADS  MATH  Google Scholar 

  • Kinoshita, H. and Nakai, H.: 1989, ‘Numerical integration methods in dynamical astronomy’, Celest.Mech. 45, pp. 231–244.

    ADS  MATH  Google Scholar 

  • Press, W.H., Flannery, B.P. Teukolsky, S.A.: 1986, Numerical Recipes in Fortran 77: The art of scientific computing,Cambridge University Press.

    Google Scholar 

  • Stoer, J. and Bulirsch, R.: 1980, Introduction to numerical Analysis, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gauchez, D., Fouchard, M., Souchay, J. (2002). Inter-Comparisons between Numerical Integrations and Analytical Theory for the Solar System. In: Celletti, A., Ferraz-Mello, S., Henrard, J. (eds) Modern Celestial Mechanics: From Theory to Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2304-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2304-6_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6078-5

  • Online ISBN: 978-94-017-2304-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics