Skip to main content

Geometry of Chaos in Models of Stellar Dynamics

  • Conference paper
Modern Celestial Mechanics: From Theory to Applications
  • 403 Accesses

Abstract

A quantitative description of Hamiltonian chaos, based on a Riemannian geometrization of Newtonian dynamics, is discussed here for a model, introduced by Contopoulos, describing the dynamics of a test star in a galactic potential. A statistical treatment of the geometry of dynamics, effective in the limit of a large number N of degrees of freedom, is here applied to the N = 3 case of the Contopoulos model, discussing how the statistical model has to be modified in order to quantitatively account for the chaoticity of the dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binney, J. and Treuraine, S.: 1987, Galactic Dynamics, Princeton University Press, Princeton, N.J., Chapter 3.

    MATH  Google Scholar 

  • Casetti, L.: 1995, Efficient symplectic algorithms for numerical simulations of Hamiltonian flows, Phys. Scr. 51, 29–34.

    Article  ADS  Google Scholar 

  • Casetti, L., Cerruti-Sola, M., Pettini, M. and Cohen, E.G.D.: 1997, The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems, Phys. Rev. E 55, 6566–6574.

    Article  MathSciNet  ADS  Google Scholar 

  • Casetti, L., Clementi, C. and Pettini, M.: 1996, Riemannian theory of Hamiltonian chaos and Lyapunov exponents, Phys. Rev. E 54, 5969–5984.

    Article  MathSciNet  ADS  Google Scholar 

  • Casetti, L., Pettini, M. and Cohen, E.G.D.: 2000, Geometric approach to Hamiltonian dynamics and statistical mechanics, Phys. Rep. 337, 237–341.

    Article  MathSciNet  ADS  Google Scholar 

  • Cerruti-Sola, M. and Pettini, M.: 1996, Geometric description of chaos in two degrees of freedom Hamiltonian systems, Phys. Rev. E 53, 179–188.

    Article  MathSciNet  ADS  Google Scholar 

  • Cerruti-Sola, M., Franzosi, R. and Pettini, M.: 1997, Lyapunov exponents from geodesic spread in configuration space, Phys. Rev. E 56, 4872–4875.

    Article  MathSciNet  ADS  Google Scholar 

  • Contopoulos, G. and Barbanis, B.: 1989, Lyapunov characteristic numbers and the structure of phase space, Astron. and Astrophys. 222, 329–343.

    MathSciNet  ADS  Google Scholar 

  • Contopoulos, G.: 1986, Qualitative changes in 3-dimensional dynamical systems, Astron. and Astrophys. 161, 244–256.

    MathSciNet  ADS  MATH  Google Scholar 

  • Contopoulos, G.: 1988, In: A.E. Roy (ed.), Long Term Dynamical Behaviour of Natural and Artificial N-Body Systems, 301.

    Google Scholar 

  • Contopoulos, G. and Grosbol, P.: 1989, Orbits in barred galaxies, Astron. Astrophys. Rev. 1, 261–289.

    Article  ADS  Google Scholar 

  • Contopoulos, G. and Magnenat, P.: 1985, Simple three dimensional periodic orbits in a galactic-type potential, Cel. Mech. 37, 387–414.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Do Carmo, M.P.: 1992, Riemannian Geometry, Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  • Eisenhart, L.P.: 1929, Dynamical Trajectories and Geodesics, Ann. Math. 30, 591–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer, J. and Holmes, P.J.: 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New York.

    Google Scholar 

  • Hawn, M. and Heiles, C.: 1964, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69, 73–79.

    Article  ADS  Google Scholar 

  • Henrard, J. and Ferraz-Mello, S. (eds): 1999, Cel. Mech. 73, Nos. 1–4, Special Issue on impact of modem dynamics in astronomy.

    Google Scholar 

  • Kandrup, H.E., Sideris, I.V. and Bohn, C.L.: 2001, Chaos, ergodicity, and the thermodynamics of lower-dimensional Hamiltonian systems, astro-ph/0108038.

    Google Scholar 

  • Pettini, M.: 1993, Geometrical hints for a non perturbative approach to Hamiltonian dynamics, Phys. Rev. E 47, 828–850.

    Article  MathSciNet  ADS  Google Scholar 

  • Pettini, M. and Valdettaro, R.: 1995, On the Riemannian description of chaotic instability in Hamiltonian dynamics, Chaos 5, 646–652.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Poincaré, H.: 1892, Les Méthodes Nouvelles de la Mécanique Celeste, Gauthier-Villars, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ciraolo, G., Pettini, M. (2002). Geometry of Chaos in Models of Stellar Dynamics. In: Celletti, A., Ferraz-Mello, S., Henrard, J. (eds) Modern Celestial Mechanics: From Theory to Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2304-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2304-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6078-5

  • Online ISBN: 978-94-017-2304-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics