Skip to main content

CFD Modelling of Hydrodynamic Conditions within the Wake of Mixing Impeller Blades

  • Chapter
Mixing and Crystallization
  • 364 Accesses

Abstract

Computational fluid dynamics simulations have been used to simulate the flow field within the impeller swept region of a baffled stirred tank. Rushton turbine and flat paddle impeller configurations are investigated using sliding mesh techniques, for which no experimental input is necessary. The results from the CFD simulations show reasonable agreement with experimental data for the location of important flow structures close to the impeller blades, including the position of flow recirculation and axis of trailing vortex pairs generated within the wake at the rear of each blade, and the angle-resolved periodicity of the flow field between successive impeller blades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlstedt, H. and Lahtinen, M. (1996) Calculation of Flow Field in a Stirred Tank with Rushton Turbine Impeller, Third CFX Int. Users Con!, Chesham, UK, 30 Oct.-1 Nov., 91–108.

    Google Scholar 

  • Ambegaonkar, A.S., Dhruv, A.S. and Tavlararides, L.L. (1977) Fluid Particle Hydrodynamics in Agitated Vessels, Can. J Chem. Engng., 55, 414–421.

    Article  CAS  Google Scholar 

  • Bakker, A., Laroche, R.D., Wang, M.H. and Calabrese, R.V. (1997) Sliding Mesh Simulation of Laminar Flow in Stirred Reactors, Trans. IChemE., 75, A, 42–44.

    Google Scholar 

  • Bakker, A. and Van den Akker, H.E.A. (1994) Single-Phase Flow in Stirred Vessels, Trans. IChemE., 72, A4, 583–593.

    Google Scholar 

  • Brucato, A., Ciofalo, M., Grisafi, F. and Micale, G. (1993) Complete Numerical Simulation of Flow Fields in Baffled Stirred Vessels: the Inner-Outer Approach, IChemE Symp. Series, 136, 155–162.

    Google Scholar 

  • Calabrese R.V. and Stoots, C.M. (1989) Flow in the Impeller Region of a Stirred Tank, Chem. Eng. Prog., May 1989, 43–50.

    Google Scholar 

  • Computational Fluid Dynamics Services (CFDS) CFX 4.1 User Manual, 1995, Harwell, Oxfordshire, U.K.

    Google Scholar 

  • DeSouza, A. and Pike, R.W. (1972) Fluid Dynamics and Flow Patterns in Stirred Tanks with a Turbine Impeller, Can. J. Chem. Engng., 50, 15–23.

    Article  Google Scholar 

  • Fort, I., Obied, A. and Brezina, V. (1982) Flow of Liquid in a Cylindrical Vessel with a Turbine Impeller and Radial Baffles, Czech. Chem. Communications, 47, 226–239.

    Article  CAS  Google Scholar 

  • Harvey, P.S. and Greaves, M. (1982) Turbulent Flow in an Agitated Vessel, Part I: A Predictive Model, Trans. IChemE., 60, A, 195–210.

    Google Scholar 

  • Harvey, A.D.III, and Rogers, S.E. (1996) Steady and Unsteady Computation of Impeller-Stirred Reactors, AIChE J., 42, 10, 2701–2712.

    Article  CAS  Google Scholar 

  • Issa, R.I. and Gosman, A.D. (1982) The Computation of Three-Dimensional Turbulent Two-Phase Flows in Mixer Vessels, 2nd Int. Conf. Numer. Meth. In Laminar and Turbulent Flows, Venice, Italy, 827–839.

    Google Scholar 

  • Jaworski, Z., Nienow, A.W. and Dyster, K. (1996) An LDA Study of Turbulent Flow in a Baffled Vessel Agitated by an Axial, Down-pumping Hydrofoil Impeller, Can. J. Chem. Eng., 74, 3–15.

    Article  CAS  Google Scholar 

  • Jaworski, Z., Nienow, A.W., Koutsakos, E., Dyster, K. and Bujalski, W. (1991) An LDA Study of Turbulent Flow in a Baffled Vessel Agitated by a Pitched Blade Turbine, Trans. IChemE., 69, A, 313–320.

    Google Scholar 

  • Jaworski, Z., Dyster, K.N., Moore, I.P.T., Nienow, A.W. and Wyszynski, M.L. (1997) The Use of Angle Resolved LDA Data to Compare Two Different Turbulence Models Applied to Sliding Mesh CFD Flow Simulations in a Stirred Tank, Récent Progrès en Génie des Procédés, 11, 51, 187–194.

    CAS  Google Scholar 

  • Kresta, S.M. and Wood, P.E. (1991) Prediction of Three-Dimensional Turbulent Flows in Stirred Tanks, AIChE. J, 37, 3, 448–460.

    Article  CAS  Google Scholar 

  • Lane, G. and Koh, P.T.L. (1997) CFD Simulation of Flow in Baffled Tanks, Chemeca ‘87, Rotorua, New Zealand, 29 September —1 October 1997.

    Google Scholar 

  • Lee, K.C., Ng, K. and Yianneskis, M. (1996) Sliding Mesh Predictions of the Flows around Rushton Impellers, Fluid Mixing V., IChemE. Symposium Series, 140, 47–58.

    Google Scholar 

  • Luo, J.Y., Gosman, A.D., Issa, R.I., Middleton, J.C. and Fitzgerald, M.K. (1993) Full Flow Field Computation of Mixing in Baffled Vessels, Trans. IChemE., 71, A, 342–344.

    Google Scholar 

  • Patankar, S.V. and Spalding, D.B. (1972) A Calculation Procedure for Heat, Mass and Momentum Transfer in 3—D Parabolic Flows, Int. J Heat Mass Transfer, 15, 1787.

    Article  Google Scholar 

  • Pericleous, K.A. and Patel (1987) Source-Sink Approach in the Modelling of Stirred Reactors, Physicochemical Hydrodynamics, 9, 1 /2, 279–297.

    Google Scholar 

  • Platzer, B. (1981) Contribution to the Calculation of Turbulent Flows in Radially Agitated Tanks with Baffles, Chem. Tech., 33, 1, 16–19.

    CAS  Google Scholar 

  • Ranade, V.V. and Dommeti, S.M.S. (1996) Computational Snapshot of Flow Generated by Axial Impellers in Baffled Stirred Vessels, Trans. IChemE., 74, A, 476–484.

    Google Scholar 

  • Ranade, V.V. and Joshi, J.B. (1990a) Flow Generated by a Disc Turbine: Part I Experimental, Trans. IChemE., 68, A, 19–33.

    Google Scholar 

  • Ranade, V.V. and Joshi, J.B. (1990b) Flow Generated by a Disc Turbine: Part II Mathematical Modelling and Comparison with Experimental Data, Trans. IChemE., 68, A, 34–50.

    Google Scholar 

  • Rhie, C.M. and Chow, W.L. (1983) Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation, AIAA J., 21, 1527–1532.

    Article  Google Scholar 

  • Smith, J.M. (1985) Dispersion of Gases in Liquids: The Hydrodynamics of Gas Dispersion in Low Viscosity Liquids,, in Ulbrecht, J.J. and Patterson, G.K., eds. (1985) Mixing of Liquids by Mechanical Means, Gordon and Breach Science Publishers, N.Y, 139–201.

    Google Scholar 

  • Smith, J.M. and Warmoeskerken, M.M.C.G. (1985) The Dispersion of Gases in Liquids with Turbines, 5th Euro. Cong. Mixing, Wurzburg, West Germany, 10–12 June 1985, 115–126.

    Google Scholar 

  • Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations, SIAM J Num. Anal., 7, 104.

    CAS  Google Scholar 

  • Stoots, C.M. and Calabrese, R.V. (1995) Mean Velocity Field Relative to a Rushton Turbine Blade, AIChE J., 41, 1, 1–11.

    Article  CAS  Google Scholar 

  • Tabor, G., Gosman, A.D. and Issa, R.I. (1996) Numerical Simulation of the Flow in a Mixing Vessel Stirred by a Rushton Turbine, Fluid Mixing V., IChemE. Symp. Series, 140, 25–34.

    CAS  Google Scholar 

  • Van Doormal, J.P. and Raithby, G.D. (1984) Enhancements to the SIMPLE Method for Predicting Incompressible Flows, Numer. Heat Transfer, 7, 147–163.

    Google Scholar 

  • van’t Riet, K. and Smith, J.M. (1973) The Behaviour of Gas-Liquid Mixtures near Rushton Turbine Blades, Chem. Eng. Sci„ 28, 1031–1037.

    Article  Google Scholar 

  • van’t Riet, K. and Smith, J.M. (1975) The Trailing Vortex System produced by Rushton Turbine Agitators, Chem. Eng. Sci„ 30, 1093–1105.

    Article  Google Scholar 

  • Wilcox, D.C. (1994) Turbulence Modelling for CFD, DCW Industries, California, USA.

    Google Scholar 

  • Xu, Y. and McGrath, G. (1996) CFD Predictions of Stirred Tank Flows, Trans. IChemE., 74, A, 471–475.

    Google Scholar 

  • Yianneskis, M., Popiolek, Z. and Whitelaw, J.H. (1987) An Experimental Study of the Steady and Unsteady Flow Characteristics of Stirred Reactors, J. Fluid Mech., 175, 537–555.

    Article  CAS  Google Scholar 

  • Yianneskis, M. and Whitelaw, J.H. (1993) On the Structure of the Trailing Vortices around Rushton Turbine Blades, Trans. IChemE., 71, A, 543–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rigby, G.D., Lane, G., Evans, G.M. (2000). CFD Modelling of Hydrodynamic Conditions within the Wake of Mixing Impeller Blades. In: Gupta, B.S., Ibrahim, S. (eds) Mixing and Crystallization. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2290-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2290-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5410-4

  • Online ISBN: 978-94-017-2290-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics