Skip to main content

Crack Nucleation

  • Chapter

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 51))

Abstract

The present chapter treats the theory of some basic mechanisms of microcrack nucleation in polycrystalline and amorphous materials. The following methods are used to achieve the results:

  • Methods of the theory of functions of a complex variable demonstrating the refined work with various singularities of the physical field on the boundary, at infinity, and inside the domain, and the techniques of the Riemann boundary value problem (Section 3.1);

  • Mellin transform method and Wiener — Hopf vs. Noble — Jones techniques of solving mixed boundary value problems (Section 3.2);

  • The work with complicated singularities and driving forces, and thermodynamics methods (Section 3.3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Zener (1948), The micro-mechanism of fracture, In: Fracture of Metals, F. Jonson, W. P. Rop and R. T. Bayles (eds.), ASM, Cleveland, Ohio, pp. 3–31.

    Google Scholar 

  2. A. N. Stroh (1954), The formation of cracks as a result of plastic flow, Proc. Roy. Soc., London, A223, pp. 404–414.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. N. Stroh (1957), A theory of the fracture of metals, Advanced Physics, 6, pp. 418–465.

    Article  ADS  Google Scholar 

  4. B. A. Bilby and J. Hewitt (1962), Hydrogen in steel–the stability of microcracks, Acta Metal., 10, pp. 587–600.

    Article  Google Scholar 

  5. E. Smith and J. T. Barnby (1967), Crack nucleation in crystalline solids, Metal Science, 1, pp. 56–64.

    Article  Google Scholar 

  6. D. Francois and T. R. Wilshaw (1968), The effect of hydrostatic pressure on the cleavage fracture of polycrycralline materials, J. Appl. Phys., 39, pp. 4170–4177.

    Article  ADS  Google Scholar 

  7. M. Nicholas (1968), The strength of metal-alumina interfaces, J. Materials Science, 3, p. 571.

    Article  ADS  Google Scholar 

  8. M. Morii and S. Nemat-Nasser (1986), Brittle failure in compression: splitting, faulting and brittle-ductile transition, Philos. Trans. Roy. Soc., London, 319, pp. 337–374.

    Article  ADS  Google Scholar 

  9. M. F. Ashby and S. D. Hallam (1968), The failure of brittle solids containing small cracks under compressive stress, Acta Metal., 34, pp. 497–510.

    Article  Google Scholar 

  10. G. P. Cherepanov (1994), Interface microcrack nucleation, J. Mech. Phys. Solids, 42 (4), pp. 665–680.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. P. Cherepanov (1962), The stress state in a heterogeneous plate with slits, Izvestia AN SSSR, OTN, Mekhan. i Mashin, 1, p. 131 (in Russian).

    Google Scholar 

  12. G. V. Kolosov (1909), Application of the Theory of Functions of One Complex Variable to the Plane Problem of the Mathematical Theory of Elasticity,Yuriev University Press, (in Russian).

    Google Scholar 

  13. N. I. Muskhelishvili (1963), Some Basic Problems in the Theory of Elasticity (Trans. by J. R. M. Radock), Noordhoff, Amsterdam, 840 p.

    Google Scholar 

  14. F. D. Gakhov (1966). Boundary Value Problems, Pergamon Press, London.

    MATH  Google Scholar 

  15. A. G. Cherepanov (1987), Slip-line as a source of microcracks. In: Interaction of Bodies in a Fluid Having Free Boundaries, Cheboxary: State University Press, pp. 141–153.

    Google Scholar 

  16. A. R. Miedema (1978), Surface energies of solid metals, Z. Metallkunde, 69, pp. 1280–89.

    Google Scholar 

  17. A. R. Miedema and F. J. A. den Broeder (1979), On the interfacial energy in solid-solid and solid-liquid combinations. Z. Metallkunde, 70, pp. 367–379.

    Google Scholar 

  18. J. Murr, S. Daw, and M. I. Baskes (1984), Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Physical Review, B 29 (12), pp. 6443–6453.

    Article  ADS  Google Scholar 

  19. J. H. Rose, J. Ferrante, and J.R. Smith (1981), Universal binding energy curves for metals and bimetallic interfaces, Physical Review Letters, 47 (9), pp. 675–678.

    Article  ADS  Google Scholar 

  20. A. H. Cottrell (1958), Trans. AIME, 212, p. 192.

    Google Scholar 

  21. G. P. Cherepanov and L. A. Kipnis (1984), Some problems of meeting, deviation and branching of slip lines, In Advances in Fracture Research, Rama Rao (ed.), Oxford, Pergamon Press.

    Google Scholar 

  22. G. P. Cherepanov (1974), Mekhanika Khrupkogo Razrushenia, Nauka, Moscow; English edition, Mechanics of Brittle Fracture, R. de Wit and W. C. Cooley (eds.), Mc Graw Hill, New York (1979).

    Google Scholar 

  23. J. Noble (1962), The Techiques of the Wiener-Hopf Method, Pergamon Press, New York.

    Google Scholar 

  24. G. P. Cherepanov (1985), Point defects in solids, pp. 605–623, In Fundamentals of Deformation and Fracture (Eshelby Memorial Volume), B. Bilby, K. Miller and J. Willis (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  25. Yu. K. Kovneristyi, E. K. Osipov, and E. A. Trofimova (1983), Physicochemical Fundamentals of Development of Amorphous Metallic Alloys (in Russian), Nauka, Moscow.

    Google Scholar 

  26. G. Bourke and F. Weiss (eds.) (1985), Surface Treatment and Reliability of Metals (in Russian translation), Mir, Moscow.

    Google Scholar 

  27. R. Ray and L. E. Tanner (1980), Density defects of n-type in amorphous alloys, Mater. Sci. Eng., 45 (2), pp. 824–830.

    Google Scholar 

  28. A.G. Cherepanov and G. P. Cherepanov (1990), On one mechanism of the crack nucleation in amorphous metals, Physics of Metals and Physical Metallurgy, 2, pp. 345.

    Google Scholar 

  29. S. Ma (1980), Modern Theory of Crystal Phenomenona ( Russian translation ), Mir, Moscow.

    Google Scholar 

  30. E. W. Montroll (1987), On the dynamics and evolution of some sociotechnical systems, Bull. Am. Math. Soc. 16 (1), pp. 1–46.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cherepanov, G.P. (1997). Crack Nucleation. In: Methods of Fracture Mechanics: Solid Matter Physics. Solid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2262-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2262-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4794-6

  • Online ISBN: 978-94-017-2262-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics