Skip to main content

Abstract

A series of methods was developed for targeted mutagenesis in enterococci. First, a transposon mutagenesis system, miniγδ-200 (mγδ), which was used previously to make insertion mutants in streptococci, was shown to be useful for generation of mutants in enterococci. After mutagenesis of cosmid clones carrying enterococcal DNA inserts in Escherichia coli with mγδ, we were able to isolate the mutants by phenotype or to screen for them by immunoblotting or comparison of restriction diges­tion patterns. Clones with mγδ insertions in targeted enterococcal genes were then introduced into enterococci by electroporation to generate targeted disruption mutations. Allelic replacement en masse, that is, electroporation of enterococci with DNA from a pool of mutagenized cosmid clones, was shown to be an efficient method to obtain mutations in genes with detectable phenotypes in enterococci. We next constructed a vector for mutagenesis using small intragenic fragments of enterococcal genes to disrupt targeted genes. This vector was modified from pBluescript SK (—) by cloning the kanamycin resis­tance determinant from mγδ into the ScaI site internal to the ampicillin resistance gene. It was then used to generate insertion mutants in Enterococcus faecalis with an intragenic fragment as small as about 500 bp. A third method, based on the conjugation system reported by Trieu-Cuot et al. [1], was devel­oped in order to circumvent difficulties in the elec­troporation of some enterococcal strains and to improve the efficiency with which targeted mutations can be generated in enterococci. This system was capable of mobilizing both small plasmids and large cosmids into enterococci by conjugation, and produced disruption mutations by homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Amp:

ampicillin

BHI:

brain-heart infusion

Cam:

chloramphenicol

Erm:

erythromycin

Kan:

kanamycin

IPTG:

isopropyl thiogalactoside

Nal:

nalidixic acid

Spc:

spectinomycin

Tet:

tetracycline

References

  1. Trieu-Cuot P, Carlier C, Poyart-Salmeron C, Courvalin P (1991). Shuttle vectors containing a multiple cloning site and a lacZa gene for conjugal transfer of DNA from Escherichia coli to Gram-positive bacteria. Gene 102: 99–104.

    Article  PubMed  CAS  Google Scholar 

  2. Murray BE (1990). The life and times of the enterococci. Clin Microbiol Rev 3: 46–65.

    PubMed  CAS  Google Scholar 

  3. Cruz-Rodz AL, Gilmore MS (1990). High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Mol Gen Genetics 224: 152–154.

    CAS  Google Scholar 

  4. Friesenegger A, Fiedler S, Devriese LA, Wirth R (1991). Genetic transformation of various species of Enterococcus by electroporation. FEMS Microbiol Lett 63: 323–327.

    Article  PubMed  CAS  Google Scholar 

  5. Li X, Weinstock GM, Murray BE (1995). Generation of auxotrophic mutants of Enterococcus faecalis. J Bacteriol 177: 6866–6873.

    PubMed  CAS  Google Scholar 

  6. Shepard BD, Gilmore MS (1995). Electroporation and efficient transformation of Enterococcus faecalis grown in high concentrations of glycine. Methods Mol Biol 47: 217–226.

    PubMed  CAS  Google Scholar 

  7. Solioz M, Waser M (1990). Efficient electrotransformation of Enterococcus hirae with a new Enterococcus-Escherichia coli shuttle vector. Biochimie 72: 279–283.

    Article  PubMed  CAS  Google Scholar 

  8. Waser M, Hess-Bienz D, Davies KMS (1992). Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae. J Biolog Chem 267: 5396–5400.

    CAS  Google Scholar 

  9. Bensing BA, Dunny GM (1993). Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis. J Bacteriol 175: 7421–7429.

    PubMed  CAS  Google Scholar 

  10. Casey J, Daley C, Fitzgerald G (1991). Chromosomal integration of plasmid DNA by homologous recombination in Enterococcus faecalis and Lactococcus lactis subsp. lactis hosts harboring Tn919. Appl Environ Microbiol 57: 2677–2682.

    PubMed  CAS  Google Scholar 

  11. Christie PJ, Kao SM, Adsit JC, Dunny GM (1988). Cloning and expression of genes encoding pheromone-inducible antigens of Enterococcus (Streptococcus) faecalis. J Bacteriol 170: 5161–5168.

    PubMed  CAS  Google Scholar 

  12. Ehrenfeld EE, Clewell DB (1987). Transfer functions of the Streptococcus faecalis plasmid pAD1: Organization of plasmid DNA encoding response to sex pheromone. J Bacteriol 169: 3473–3481.

    Google Scholar 

  13. Handwerger S (1994). Alterations in peptidoglycan precursors and vancomycin susceptibility in Tn91 7 insertion mutants of Enterococcus faecalis 221. Antimicrob. Agents Chemother 38: 473–475.

    Article  PubMed  CAS  Google Scholar 

  14. Ike Y, Clewell DB, Segarra RA, Gilmore MS (1990). Genetic analysis of the pAD1 hemolysinlbacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J Bacteriol 172: 155–163.

    PubMed  CAS  Google Scholar 

  15. Pontius LT, Clewell DB (1992). Conjugative transfer of Enterococcus faecalis plasmid pAD1: Nucleotide sequence and transcriptional fusion analysis of a region involved in positive regulation. J Bacteriol 174: 3152–3160.

    Google Scholar 

  16. Pontius LT, Clewell DB (1992). Regulation of the pAD1-encoded sex pheromone response in Enterococcus faecalis: Nucleotide sequence analysis of traA. J Bacteriol 174: 1821–1817.

    PubMed  CAS  Google Scholar 

  17. Tomich PK, An F, Clewell DB (1980). Properties of erythromycin-inducible Tn917 in Streptococcus faecalis. J Bacteriol 141: 1366–1374.

    PubMed  CAS  Google Scholar 

  18. Trotter K, Dunny G (1990). Mutants of Enterococcus faecalis deficient as recipients in mating with donors carrying pheromone-inducible plasmids. Plasmid 24: 57–67.

    Article  PubMed  CAS  Google Scholar 

  19. Fogg GC, Gibson CM, Caparon MG (1994). The identification of rofA, a positive-acting regulatory component of prtF expression: Use of a mïS-based shuttle mutagenesis strategy in Streptococcus pyogenes. Mol Microbiol 11: 671–684.

    Article  PubMed  CAS  Google Scholar 

  20. Chung CT, Niemela SL, Miller GH (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86: 2172–2175.

    Google Scholar 

  21. Miller JH (1972). Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  22. Murray BE, Singh KV, Ross RP, Heath JD, Dunny GM, Weinstock GM (1993). Generation of restriction map of Enterococcus faecalis strain OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175: 5216–5223.

    PubMed  CAS  Google Scholar 

  23. Singh KV, Qin X, Weinstock GM, Murray BE (1997). Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 178: 1416–1420.

    Article  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning. A laboratory manual, 2nd Edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  25. Birnboim HC, Doly J (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7: 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  26. Xu Y, Jiang LX, Murray BE, Weinstock GM (1997). Enterococcus faecalis antigens in human infections. Infect Immun 65: 4207–4215.

    Google Scholar 

  27. Lowe AM, Lambert PA, Smith AW (1995). Cloning of an Enterococcus feacalis endocarditis antigen: Homology with adhesins from some oral streptococci. Infect Immun 63: 703–706.

    Google Scholar 

  28. Dunny GM, Lee LN, LeBlanc DJ (1991). Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol 57: 1194–1201.

    PubMed  CAS  Google Scholar 

  29. Wirth R, An FY, Clewell DB (1986). Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J Bacteriol 165: 831–836.

    PubMed  CAS  Google Scholar 

  30. Su YA, Sulavik MC, He P, et al. (1991). Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59: 415–420.

    PubMed  CAS  Google Scholar 

  31. Teng F, Murray BE, Weinstock GM (1998). Conjugal transfer of plasmid DNA from Escherichia coli to enterococci: A method to make insertion mutations. Plasmid 39: 182–186.

    Google Scholar 

  32. LeBlanc DJ, Lee LN, Inamine JM (1991). Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother 35: 1804–1810.

    Article  PubMed  CAS  Google Scholar 

  33. Shizuya H, Birren B, Kim U-J, et al. (1992). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factorbased vector. Proc Natl Acad Sci USA 89: 8794–8797.

    Article  PubMed  CAS  Google Scholar 

  34. Smith CL, Canter CR (1987). Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol 155: 449–467.

    Article  PubMed  CAS  Google Scholar 

  35. Qin X, Singh KV, Weinstock GM, Murray BE (1998). Effect of interruption of the gene encoding autolysin of Enterococcus faecalis strain OG1RF. Antimicrob Agents Chemother 42: 2883–2888.

    PubMed  CAS  Google Scholar 

  36. Matsushima P, Broughton MC, Turner JR, Baltz RH (1994). Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa: Effects of chromosomal insertions on macrolide A83543 production. Gene 146: 39–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara E. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Qin, X., Teng, F., Xu, Y., Singh, K.V., Weinstock, G.M., Murray, B.E. (1998). Targeted mutagenesis of enterococcal genes. In: Fives-Taylor, P.M., LeBlanc, D.J. (eds) Methods for studying the genetics, molecular biology, physiology, and pathogenesis of the streptococci. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2258-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2258-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5262-9

  • Online ISBN: 978-94-017-2258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics