Skip to main content

Abstract

We have recently developed a novel bacteriophage-protection system for Lactococcus lactis, based on a two-component genetic ‘trap’. An inducible promoter from a lytic bacteriophage is used to activate a lethal gene after infection, killing the host cell and halting phage proliferation. To expand the potential use of this novel defense strategy, promoters specific to any particular phage of interest must be available for fusion to a universal death gene. A method to localize regulated promoters within the context of the total phage genome was evaluated. The ‘capping’ activity of the vaccinia virus guanylyltransferase was exploited to label newly synthesized mRNA extracted from infected cells at sequential time points over the course of a phage infection. The labeled mRNAs were then used as probes in Southern hybridization reactions to identify restriction fragments in the phage genome where new transcripts were initiated during progression of the phage lytic cycle. This method has been used successfully in our laboratory to map the general location of a number of inducible promoters on the genomes of bacteriophages attacking lactic acid bacteria. Once identified and cloned, small fragments encoding inducible promoters can be partially sequenced and primer extension reactions carried out on phage RNA, isolated over the course of an infection, to pinpoint the precise location of the promoter. In this study, we illustrate the use of the capping method to map the phage-inducible promoter on the genome of the lactococcal bacteriophage skl. This approach provides a rapid and efficient means to identify promoter regions on the genomes of relatively uncharacterized phages. These promoters can then be used in a variety of applications, including phage-triggered defenses and inducible gene expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandry PS, Davidson BE, Hillier AJ (1994). Temporal transcription map of Lactococcus lactis bacteriophage skl. Microbiology 140: 2251–2261.

    Article  PubMed  CAS  Google Scholar 

  2. Chandry, PS, Moore, SC, Boyce, JD, Davidson BE, Hillier AJ (1997). Analysis of the DNA sequence, gene expression, origin of replication, and modular structure of the Lactococcus lactis lytic bacteriophage skl. Mol Microbiol 26: 49–64.

    Article  PubMed  CAS  Google Scholar 

  3. Cho N-Y, Choi M, Rothman-Denes LB (1995). The bacteriophage N4-coded single-stranded DNA-binding protein (N4SSB) is the transcriptional activator of Escherichia coli RNA polymerase at N4 late promoters. J Mol Biol 246: 461–471.

    Article  PubMed  CAS  Google Scholar 

  4. Djordjevic GM, Klaenhammer, TR (1996). Positive selection, cloning vectors for Gram-positive bacteria based on a restriction endonuclease cassette. Plasmid 35: 37–45.

    Article  PubMed  CAS  Google Scholar 

  5. Djordjevic GM, Klaenhammer TR (1997). Bacteriophage-triggered defense systems: phage adaptation and design improvements. Appl Environ Microbiol 63: 4370–4376.

    PubMed  CAS  Google Scholar 

  6. Djordjevic GM, O’Sullivan DJ, Walker SA, Conkling MA, Klaenhammer TR (1997). A triggered-suicide system designed as a defense against bacteriophages. J Bacteriol 179: 6741–6748.

    PubMed  CAS  Google Scholar 

  7. Elliott T, Geiduschek EP (1984). Defining a bacteriophage T4 late promoter: absence of `-35’ region. Cell 36: 211–219.

    Article  PubMed  CAS  Google Scholar 

  8. Farrell RE Jr (1993). Practical nucleic acid hybridization. In: RNA methodologies, pp 191–203. Academic Press, Inc.

    Chapter  Google Scholar 

  9. Gasson MJ (1983). Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154: 1–9.

    PubMed  CAS  Google Scholar 

  10. Haynes LL, Rothman-Denes LB (1985). N4 virion RNA polymerase sites of transcription initiation. Cell 41: 597–605.

    Article  PubMed  CAS  Google Scholar 

  11. Hill C, Pierce K, Klaenhammer TR (1989). The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R’/M’) and abortive infection ( Hsp’ ). Appl Environ Microbiol 55: 2416–2419.

    Google Scholar 

  12. Itoh N, Mizumoto K, Kaziro Y (1984). Messenger RNA guanylyltransferase from Saccharomyces cerevisiae. J Biol Chem 259: 13923–13929.

    PubMed  CAS  Google Scholar 

  13. Mizumoto K, Lipman F (1979). Transmethylation and transguanylylation in 5’-RNA capping system isolated from rat liver nuclei. Proc Natl Acad Sci USA 76: 4961–4965.

    Article  PubMed  CAS  Google Scholar 

  14. Monroy G, Spencer E, Hurwitz J (1978a). Purification of mRNA guanylyltransferase from vaccinia virions. J Biol Chem 253: 4481–4489.

    PubMed  CAS  Google Scholar 

  15. Monroy G, Spencer E, Hurwitz J (1978b). Characteristics of reactions catalyzed by purified guanylyltransferase from vaccinia virus. J Biol Chem 253: 4490–4498.

    PubMed  CAS  Google Scholar 

  16. Monsalve M, Mencia M, Rojo F, Salas M (1995). Transcription regulation in Bacillus subtilis phage X29: expression of the viral promoters throughout the infection cycle. Virology 207: 23–31.

    Article  PubMed  CAS  Google Scholar 

  17. Nuez B, Salas M (1993). Bacteriophage Nf DNA region controlling late transcription: structural and functional homology with bacteriophage X29. Nucleic Acid Res 21: 2861–2865.

    Article  PubMed  CAS  Google Scholar 

  18. O’Sullivan DJ, Klaenhammer TR (1995). C Llal is a bifunctional regulatory protein of the liai restriction modification operon from Lactococcus lactis. In: Feretti JJ, Gilmore MS, Klaenhammer TR, Brown F (eds), Genetics of the streptococci, enterococci, and lactococci, vol 85: Dev Biol Stand, pp 591–595. Basel: Karger.

    Google Scholar 

  19. O’Sullivan DJ, Zagula K, Klaenhammer TR (1995). In vivo restriction by LIaI is encoded by three genes, arranged in an operon with llaiM, on the conjugative Lactococcus plasmid pTR2030. J Bacteriol 177: 134–143.

    PubMed  Google Scholar 

  20. O’Sullivan DJ, Walker SA, West SG, Klaenhammer TR (1996). Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Bio/Technology 14: 82–87.

    Article  PubMed  Google Scholar 

  21. Parreira R, Valyasevi R, Lerayer ALS, Ehrlich SD, Chopin M-C (1996). Gene organization and transcription of a late-expressed region of Lactococcus lactis phage. J Bacteriol 178: 6158–6165.

    PubMed  CAS  Google Scholar 

  22. Powell IB, Arnold PM, Hillier AJ, Davidson BE (1989). Molecular comparison of prolate-and isometric-headed bacteriophages of lactococci. Can J Microbiol 35: 860–866.

    Article  CAS  Google Scholar 

  23. Raya RR, Kleeman EG, Luchansky JB, Klaenhammer, TR (1989). Characterization of the temperate bacteriophage Oadh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol 55: 2206–2213.

    PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis, T (1989). Molecular cloning: a laboratory manual, Second edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  25. Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  26. Stoddard SF, Howe MM (1989). Localization and regulation of bacteriophage Mu promoters. J. Bacteriol 171: 3440–3448.

    PubMed  CAS  Google Scholar 

  27. Terzaghi BE, Sandine WE (1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29: 807–813.

    PubMed  CAS  Google Scholar 

  28. Waterfield NR, Lubbers MW, Polzin KM, Le Page RWF, Jarvis AW (1996). An origin of DNA replication from Lactococcus lactis bacteriophage c2. Appl Environ Microbiol 62: 1452–1453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Klaenhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Djordjevic, G.M., Klaenhammer, T.R. (1998). A method for mapping phage-inducible promoters for use in bacteriophage-triggered defense systems. In: Fives-Taylor, P.M., LeBlanc, D.J. (eds) Methods for studying the genetics, molecular biology, physiology, and pathogenesis of the streptococci. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2258-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2258-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5262-9

  • Online ISBN: 978-94-017-2258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics