Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 114))

  • 339 Accesses

Abstract

A plane layer of fluid uniformly heated from below and subject to rotation is considered as a severely idealized model of small-scale convection which can drive large-scale mean motions. The three-dimensional, time-dependent flow is simulated by numerical solution of the Boussinesq equations, including all Coriolis terms. At high latitudes, rotation reduces the horizontal scale of the convective elements and decreases the vertical heat flux. In the tropics, rotation elongates the cells and produces opposite mean flows near the surface and aloft, together with equatorward fluxes of heat and angular momentum. The simulations are illustrated by a computer-produced movie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busse, F. H.:1978, Rep. Prog. Phys., 41, pp. 1929–1967.

    Google Scholar 

  2. Hathaway, D. H., and Somerville, R. C. J.: 1983, J. Fluid Mech., 126, pp. 75–89.

    Article  Google Scholar 

  3. Hathaway, D. H., Toomre, J., and Gilman, P. A.: 1980, Geophys. Astrophys. Fluid Dyn., 15, pp. 7–37.

    Article  Google Scholar 

  4. Koschmieder, E. L.: 1974, Adv. Chem. Phys., 26, pp. 177–212.

    Article  Google Scholar 

  5. Rogers, R. H.: 1976, Rep. Prog. Phys., 39, pp. 1–63.

    Article  Google Scholar 

  6. Somerville, R. C. J.: 1971, Geophys. Fluid Dyn., 2, pp. 247262.

    Google Scholar 

  7. Somerville, R. C. J., and Gal-Chen, T.: 1979, J. Atmos. Sci., 36, pp. 805–815.

    Article  Google Scholar 

  8. Somerville, R. C. J. and Lipps, F. B.: 1973, J. Atmos. Sci., 30, pp. 590–596.

    Article  Google Scholar 

  9. Spiegel, E. A.: 1971, Ann. Rev. Astron. Astrophys., 9, pp. 323–392.

    Article  Google Scholar 

  10. Spiegel, E. A.: 1971, Ann. Rev. Astron. Astrophys., 10, pp. 261–304.

    Article  Google Scholar 

  11. Veronis, G.: 1959, J. Fluid Mech., 5, pp. 401–435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Somerville, R.C.J. (1983). Bénard Convection and Effects of Rotation. In: Lilly, D.K., Gal-Chen, T. (eds) Mesoscale Meteorology — Theories, Observations and Models. NATO ASI Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2241-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2241-4_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8390-6

  • Online ISBN: 978-94-017-2241-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics