Skip to main content

Transition to the Dynamic Behaviour of Structured and Heterogeneous Materials

  • Chapter
Mechanical Behaviour of Engineering Materials
  • 321 Accesses

Abstract

The current technology of the design and manufacturing of laminated and fibre-reinforced composites is faced with problems essentially related to the inherent nature of the mechanical response of the different constituents of the microstructure, the formation of interfaces between such constituents and the evolution of the associated deformation processes under loading. Optimal design of such material systems is becoming a very progressive and challenging domain in both applied mechanics and material science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. D. and Bacon, D. G. C. (1973a) The dynamic properties of unidirectional fibre-reinforced composites in flexure and torsion, J. Composite Materials 7, 53–67.

    Article  ADS  Google Scholar 

  • Adams, R. D. and Bacon, D. G. C. (1973b) Effects of fibre orientation and laminate geometry on the dynamic properties of CFRP, J. Composite Materials 7, 402–28.

    Article  ADS  Google Scholar 

  • Agarwal, B.D. and Broutman, L. J. (1980) Analysis and Performance of Fibre Composites, Wiley Interscience, New York.

    Google Scholar 

  • Agbossou, A., Bergeret, A., Benzarti, K. and Alberola. N. (1993) Modelling of the viscoelastic behaviour of amorphous thermoplastic/glass beads composites based on the evaluation of the complex Poisson’s ratio of the polymer matrix, J. Materials Science 28, 1963–72.

    Article  ADS  Google Scholar 

  • Akay, M. (1993) Aspects of dynamic mechanical analysis in polymeric Composites, Composite Science and Technology 47, 419–23.

    Article  Google Scholar 

  • Bert, C.M. (1980) Damping applications for vibrations control, ASME AMD-38, The American Society of Mechanical Engineers, New York, pp. 53–63.

    Google Scholar 

  • Bert, C.M. and Clary, RR (1974) Composite materials: Testing and design, ASTM STP 546–The American Society for Testing and Materials, Philadelphia, pp. 250–65.

    Google Scholar 

  • Cavaille, J.Y., Johari,G.P. and Mikalajczak, G. (1987) Dynamic mechanical properties of structural glass-fibre epoxy composites, Polymer 28, 1841–46.

    Google Scholar 

  • Chua, P. S. (1987), 42th Annual Conference, Composites Institute, The Society of the Plastics Industry, February 1987, Session 21-A, Ohio, USA.

    Google Scholar 

  • Cox, H.L. (1952) The elasticity and strength of paper and other fibrous materials, British Journal of Applied Physics 3, 72–84.

    Article  ADS  Google Scholar 

  • Feng, J. (1999) On the Viscoelastic Response of Laminated Composites, Masters Thesis, University of Ottawa, Canada.

    Google Scholar 

  • Folkes, M. J., Kalay, G. and Ankara, A. (1993) The effect of heat treatment on the properties of PEEK and APC2, Composites Science and Technology 46, 77–83.

    Article  Google Scholar 

  • Gerard, J. F., P. Perret and Chabert, B. (1990) Study of carbon/epoxy interface (or Interphase): Effect of surface treatment of carbon fibres on the dynamic mechanical behaviour of carbon/epoxy unidirectional composites, in: Controlled Interphases in Composite Materials, H. Ishida (ed.), Proceedings of the Third International Conference on Composite Interfaces (ICCI- III), May 21–24, 1990, Cleveland, Ohio, pp. 449–56.

    Google Scholar 

  • Gibson, R.F., Chaturvedi, S.K. and Sun, C.T. (1982) Complex moduli of aligned discontinuous fibre-reinforced polymer composites, Journal of Materials Science 17, 3499–509.

    Article  ADS  Google Scholar 

  • Gibson, R. F. and Plunkett, R. (1976) Dynamic mechanical behaviour of fibre-reinforced composites: Measurement and analysis, J. Composite Materials. 10 (October 1976), 325–41.

    Article  ADS  Google Scholar 

  • Gibson, R. F. and Yau, A. (1980) Complex moduli of chopped fibre and continuous fibre composites: Comparison of measurements with estimated bounds, J. Composite Materials 14 (April 1980), 15567.

    Google Scholar 

  • Grady, J. E., and Meyn, E. H. (1989) Vibration testing of impact damaged composite laminates, Proceedings, 30th AIAA/ASME/ASCE/AHS/ASC SDM Conference, Mobile, AL, pp. 2186–93.

    Google Scholar 

  • Haddad, Y.M. (1995) Viscoelasticity of Engineering Materials, Kluwer, Dordrecht.

    Book  Google Scholar 

  • Haddad, Y.M. and Feng, J. (1999) On the optimization of the mechanical behavior of a class of composite systems under both quasi-static and dynamic loading, AMPT’99, Dublin, Ireland.

    Google Scholar 

  • Hanagud, S., Nagesh Babu, G. L., Roglin, R., L. and Savanur, S. G. (1992) Active control of delamination in composite Structures, Proceedings, 33rd AIAA/ASME/ASCE/ASC SDM Conference, Dallas, TX, pp. 1819–29.

    Google Scholar 

  • Hashin, Z. (1965) On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry, J. Mechanics and Physics of Solids 13 119.

    Google Scholar 

  • Hashin, Z. (1970a) Complex moduli of viscoelastic composites. I. General theory and application to particulate composites, Int. J. Solids Structures 6, 539–52.

    Article  MATH  Google Scholar 

  • Hashin, Z (1970b) Complex moduli of viscoelastic composites. II. Fibre-reinforced materials, Mt. J. Solids and Structures 6, 797–807.

    Article  Google Scholar 

  • Hashin, Z and Rosen, B. W. (1965) The elastic moduli of fibre-reinforced materials, J. Applied Mechanics 32 219.

    Google Scholar 

  • Heimbuch, R A. and Sanders, B. A. (1978) Mechanical properties of automotive fibre reinforced plastics, in: Composite Materials in the Automotive Industry, ASME, Kulkarni, S. V., Zweben, C. H., and Pipes, R.B. (Eds.), 111–39.

    Google Scholar 

  • Hill, R. (1964) Theory of mechanical properties of fibre-strengthen materials. I. Elastic behaviour, J. Mech. Phys. Solids 12, 199–212.

    Article  MathSciNet  ADS  Google Scholar 

  • Jones, R. M. (1975) Mechanics of Composite Materials,McGraw-Hill

    Google Scholar 

  • Jutte, R B. (1978) Structural SMC-material, Process and performance review, SAE Paper No. 780355, 1978 SAE Congress, Detroit.

    Book  Google Scholar 

  • Kimoto, M. (1990) Flexural properties and dynamic mechanical properties of glass fibre-epoxy composites, J. Materials Science 25, 3327–32.

    Article  ADS  Google Scholar 

  • Kodama, M. (1976) Mechanical dispersion of cross-link polymers reinforced with randomly distrubted short fibre, J. Appl. Polym. Sci. 20, 2165–84.

    MathSciNet  Google Scholar 

  • Lee, B. T., Sun, C. T. and Liu, D. (1987) An assessment of damping measurement in the evaluation of integrity of composite beams, J. Reinforced Plastics and Composites 6, 114–25.

    Article  ADS  Google Scholar 

  • Lewis, T. B. and Nielsen, L. E. (1970) J. Appl. Polym. Sci. 14, 1449.

    Google Scholar 

  • Mclean, D. and Read, B. E. (1975) Storage and loss moduli in discontinuous composites, J. Materials Science 10, 481–92.

    Article  ADS  Google Scholar 

  • Mitoh, M. and Nakao, I. (1983) J. Adhesion Soc. Jpn, 19, 485.

    Google Scholar 

  • Miyano, Y., Kanemitsu, M., Kunio, T. and Kuhn, H. (1986) Role of matrix resin on fracture strength of unidirectional C. F. R. P., J. Compos. Mater. 20, 520–38.

    Article  ADS  Google Scholar 

  • Nashif, A.D., Jones, D.I.G. and Henderson, J.P. (1965) Vibration Damping, Wiley, New York.

    Google Scholar 

  • Nemes, J. A. and Randles, P. W. (1994) Constitutive modeling of high strain-rate deformation and spall fracture of graphite/peek composites, Mechanics ofMaterials 19, 1–14.

    Article  Google Scholar 

  • Paul, B. (1960) Prediction of elastic constants of multiphase materials, Trans. of the Metallurgical Society ofAIME 218 (February 1960), pp. 36–41.

    Google Scholar 

  • Paxson, E. B., Jr. (1975) Real and imaginary parts of the complex viscoelastic modulus for boron fibre reinforced plastics, J. Acoustical Society of America 57, 891.

    Article  ADS  Google Scholar 

  • Raju, P. K., Vaidya, U. K. and Crocker, M. J. (1992) Characterization of carbon-carbon (C/C) composites using vibration measurements, in: Vibro Acoustic Characterization ofMaterials and Structures, P.

    Google Scholar 

  • K. Raju (ed.), NCA-Vol. 14, ASME, New York, N. Y., 177–81.

    Google Scholar 

  • Rao, S.S. (1984) Optimization: Theory and Applications, Wiley Eastern Limited, Second Edition, pp. 64951.

    MATH  Google Scholar 

  • Reed, K. E. (1979) 34th Annual Technical Conference, Reinforced Plastics/Composites Institute,The Society of the Plastics Industry, Jan. 1979, Session 22G.

    Google Scholar 

  • Rotem, A. (1993) Load frequency effect on the fatigue strength of isotropic laminates, Composites Science and Technology 46, 129–38.

    Article  Google Scholar 

  • Roylance, D. (1980) Stress-wave damage in graphite/epoxy laminates, J. Compos. Mater. 13, 14111–14119.

    Google Scholar 

  • Saravanos, D. A. (1993) Mechanics for the effects of delamination on the dynamic characteristics of composite laminates, NCA-Vol. 16/AMO-Vol. 172, Dynamic Characterization of Advanced Materials, ASME 1993, P. K. Raju and R. F. Gibson (editors), pp. 11–21.

    Google Scholar 

  • Schultz, A. B. and Tsai, S. W. (1968) Dynamic moduli and damping ratios in fibre-reinforced composites, J. Composite Materials 2, 368.

    Article  ADS  Google Scholar 

  • Schultz, A. B. and Tsai, S. W. (1969) Measurements of complex dynamic moduli for laminated fibre-reinforced composites, J. Composite Materials 3, 434.

    Article  ADS  Google Scholar 

  • Souma, I, (1982) Dynamic mechanical properties of polyvinylchloride composite system, J. Appl. Polym. Sci. 27, 1523–32.

    Article  Google Scholar 

  • Suarez, S.A., Gibson, R.F., Sun, C.T. and Chaturvedi, S.K. (1986) The influence of fibre length and fibre orientation on damping and stiffness of polymer composite materials, Experimental Mechanics 6, 175–84.

    Article  Google Scholar 

  • Sun, C.T., Gibson, R.F. and Chaturvedi, S.K. (1985) Internal materials damping of polymer matrix composites under off-axis loading, Journal ofMaterials Science 20, 2575–85.

    Article  ADS  Google Scholar 

  • Suzuki, K. and Miyano, Y. (1976) Time-temperature dependence of flexural strength of GRP laminates, J. Soc. Mater. Sci. Jpn. 25, 302.-8.

    Google Scholar 

  • Tracy, J. J. and Pardoen, G. C. (1989) Effect of delamination on the natural frequencies of composite laminates, J. Composite Materials 23, 1200–15.

    Article  ADS  Google Scholar 

  • Wolfe, J. A. and Carne, T. G. (1979) Identification of elastic constants for composites using modal analysis, Society for Experimental Stress Analysis, May 1979 Spring Meeting, San Francisco.

    Google Scholar 

Further Reading

  • Akay, M. (1971) Dynamic Mechanical Properties of Polymeric Paint Films, Ph. D. Thesis, University of Manchester Institute of Science and Technology, UK.

    Google Scholar 

  • Barker, L. M. (1971) A model for stress-wave propagation in composite materials, J. Compos. Mater. 5, 14162.

    ADS  Google Scholar 

  • Bennouna, M. M. and White, R. G. (1984) The effects of large vibration amplitudes on the dynamic strain response of a clamped-clamped beam with consideration of fatigue life, J. Sound Vib. 96 (3), 281–308.

    Article  ADS  Google Scholar 

  • Bert, C. W. (1977) Optimal design of a composite material plate to maximise its fundamental frequency, J.

    Google Scholar 

  • Sound Vib. 50 229–39.

    Google Scholar 

  • Brinson, L. C. and Knauss, W. G. (1991) Thermorheologically complex behaviour of multiphase viscoelastic materials, J. Mechanics and Physics of Solids 39 (7), 859–80.

    Article  ADS  Google Scholar 

  • Broutma, L. J. and Krock, R. H. (1967) Modern Composite Materials,Addison-Wesley.

    Google Scholar 

  • Caprino, G., Crivelli-Visconti, T. And Di-Illo, A. (1984) Composite materials response under low velocity impact, Comp. Struct. 2 (3), 261–71.

    Article  Google Scholar 

  • Clarkson, B. L. (1968) Acoustic fatigue test facilities, in: Noise and Acoustic Fatigue in Aeronautics, E. J. Richards and D. J. Mead (Eds.), Chap. 19, John Wiley, New York.

    Google Scholar 

  • Curran, D. R., Seamen, L. and Shockey, D. A. (1987) Dynamic failure of solids, Phys. Rep. 147, 253.

    Article  ADS  Google Scholar 

  • Davison, L. and Graham, R. J. (1979) Shock compression of solids, Phys. Rep. 55 (4), 255–379.

    Article  ADS  Google Scholar 

  • Dobynes, A. L. and Porter, T. R. (1981) A study of structural integrity of graphite composite structures subjected to low velocity impact, Poly. Eng. Sci, 21 (8), 493–8.

    Article  Google Scholar 

  • Folk, R., Fox, G., Shook, C. A. and Curtis, C. W. (1958) Elastic strain produced by sudden application of pressure to one end of a cylindrical bar. I. Theory, J. Acousto. Soc. Am. 30, 552–8.

    Article  MathSciNet  ADS  Google Scholar 

  • Fujii, T. (1993) Dynamic response of sandwich beams with an adhesive damping layer, Int. J. Adhesion and Adhesives 13 (3), July 1993, 201–9.

    Article  Google Scholar 

  • Gibson, R. F. (1975) Elastic and Dissipative Properties of Fibre-Reinforced Composite Materials in Flexural Vibration, Ph.D. Dissertation, University of Minnesota, Minneapolis, USA.

    Google Scholar 

  • Gibson, R. F. (1989) Dynamic mechanical properties of advanced composite materials and structures: A review of recent research, Shock and Vibration Digest 9, 9–17.

    Article  Google Scholar 

  • Goldsmith, W. (1960) Impact, Edward Arnod, London.

    MATH  Google Scholar 

  • Greszczuk, L. B. (1982) Damage in composite materials due to low velocity impact, in: Impact Dynamics, John Wiley, New York, 55–94.

    Google Scholar 

  • Haddad, Y. M. (1986) A microstructural approach to the mechanical response of composite systems with randomly oriented short fibers, J. Mat. Sci 21, 3767–76.

    Article  ADS  Google Scholar 

  • Haddad, Y. M. (1992) On the deformation theory of a class of randomly structured composite systems, ASME, J. Energy Resources Technology 114, 110–16.

    Article  Google Scholar 

  • Haddad, Y. M. (Editor) (1998) Advanced Multilayered and Fibre-Reinforced Composites, Kluwer, Dordrecht.

    Google Scholar 

  • Haddad, Y. M. and Tanary, S. (1989) On the micromechanical characterization of the creep response of a class of composite systems, ASME, J. Pressure Vessel Technology 111, 177–82.

    Article  Google Scholar 

  • Hagen, R., Salmen, L. and de Ruvo, A. (1993) Dynamic mechanical studies of a highly filled composite structure: A lightweight coated paper, J. Applied Polymer Science 48, 603–10.

    Article  Google Scholar 

  • Hashin, Z. (1970c) Dynamic behaviour of viscoelastic composites, Int. J. Solid Struct. 5, 539–54.

    Google Scholar 

  • Herrman, W. (1969) Nonlinear stress waves in metals, in: Wave propagation in solids, ASME, New York.

    Google Scholar 

  • Holehouse, I. (1984) Sonic Fatigue Design Techniques for Advanced Composite Airplane Structures, Ph. D. Thesis, University of Southhampton.

    Google Scholar 

  • Holmes, J. W., Wu, X. And Ramakrishnau, V. (1992) High-frequency fatigue of fibre-reinforced ceramics, 16th Annual Conference and Exposition on Ceramics and Advanced Composites, Cocoa Beach, Fl., January 1992.

    Google Scholar 

  • Hooker, R. J. (1975) High Damping Metals, Ph.D. Thesis, University of Sothampton.

    Google Scholar 

  • Khalil, A. A. and Bayoumsi, M. R. (1991) Effect of loading rate on fracture toughness of bonded joints, Int. J. Adhesion and Adhesives 11(1), January 1991, 25–29.

    Google Scholar 

  • Kinra, V. K., Wren, G. G., Rawal, S. P. and Misra, M. S. (1991) On the influence of ply-angle on damping and modulus of elasticity of a metal matrix composite, Metallurgical TransactionsA 22a, 641–51.

    Article  ADS  Google Scholar 

  • Kinslow, R. (1967) Stress waves in laminated materials, AIAA paper No. 67–140, AIAA-5’ Aerospace Sciences Meeting, January 1967.

    Google Scholar 

  • Lai, K. M. (1983) Low velocity transverse impact behaviour of 8 ply graphite-epoxy laminates, J. Rein. Plast. Comp. 2, 216.

    Article  Google Scholar 

  • Lai, K. M. (1983) Residual strength assessment of low velocity impact damage of graphite-epoxy laminates, J. Rein. Plast. Comp. 2, 226–39.

    Article  Google Scholar 

  • Lazan, B. J. (1968) Damping ofMaterials and Members in Structural Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Lesientre, G. A. (1994) Modelling frequency-dependent longitudinal dynamic behaviour of linear viscoelastic long fibre composites, J. Composite Materials 28 (18), 1770–82.

    Google Scholar 

  • Lesientre, G. A., Yarlagadda, D., Christensen, D. and Whatley, W. (1993) Enhanced flexural damping of composite plates using intercalated graphite fibre, AIAA Journal 31 (4), 746–50.

    Article  ADS  Google Scholar 

  • Lin, D. X., Ni, R. G. and Adams, R. D. (1984) Prediction and measurement of the vibrational damping parameters of carbon and glass fibre-reinforced plastic plates, J. Composite Materials 18, 132–52.

    Article  ADS  Google Scholar 

  • Murayama, T (1978) Dynamic Mechanical Analysis of Polymeric Material, Elsevier, Amsterdam.

    Google Scholar 

  • Ni, R. G. and Adams, R. D. (1984) The damping and dynamic moduli of symmetric laminated composite beams–Theoretical and experimental results, J. Composite Materials 18, 104–21.

    Article  ADS  Google Scholar 

  • Nielsen, L. E. (1974) Mechanical Properties of Polymers and Composites,Marcel Dekker, New York, Vol. 2, Ch. 7.

    Google Scholar 

  • Palmer, T. A. and White, R. G. (1984) Development of carbon fibre reinforced plastics for use in high performance structures, in Proceedings, Conf on Fibre Reinforced Plastics, University of Liverpool, April 1984.

    Google Scholar 

  • Peck, J. C. (1971) Pulse attenuation in composites, in: Shock Waves and the Mechanical Properties of Solids, J. J. Burke and V. Weiss (Eds.), Proc. 17th Army Materials Research Conf., Syracuse Univ. Press, pp. 155–84.

    Google Scholar 

  • Peck, J. C. and Gunman, G. A. (1969) Dispersive pulse propagation parallel to the interfaces of a laminated composite, J. Appl. Mech. 36, 479–84.

    Article  ADS  MATH  Google Scholar 

  • Saravanos, D. A. and Chamis, C. C. (1990) Mechanics of damping for fibre composite laminates including hygro-thermal effects, AIAA Journal 28 (10) 1813–19.

    Google Scholar 

  • Saravanos, D. A. and Pereira, J. M. (1992) Effects of interply darning layers on the dynamic characteristics of composite plates, AIAA Journal 30 (12), 2906–13.

    Article  ADS  Google Scholar 

  • Schier, J. F. and Juergens, R. J. (1983) Design impact of composites on fighter aircraft. Pt. 1. They force a fresh look at the design process, Aeronautics and Astronautics, 21 (9), 44–49.

    Google Scholar 

  • Schuler, K. W. and Nunziato, J. W. (1974) The dynamic mechanical behaviour of polymethyl methacrylate, Rheol. Acta 13, 265–273.

    Article  Google Scholar 

  • Shalak, R. (1957) Longitudinal impact of a circular elastic rod, J. Appl. Mech. 24, 59–64.

    MathSciNet  Google Scholar 

  • Shen, M. H. H. and Grady J. E. (1992) Free vibrations of delaminated beams, NASA TM 105582.

    Google Scholar 

  • Shuler, S. A., Holmes, J. W. and Wu, X. (1993) Influence of loading frequency on the room-temperature fatigue of a carbon-fibre/Si C- matrix composite, J. Am. Ceram. Soc. 76 (9), 2327–36.

    Google Scholar 

  • Souvere, J. (1984) Dynamic Response ofAcoustically Excited Stiffened Composite Honeycomb Panels,Ph. D. Thesis, University of Southhampton. (3), 309–31.

    Google Scholar 

  • Suarez, S. A., Gibson, R F., Sun, C. T. and Chaturvedi, S. K. (1986). The influence of fibre length and fibre orientation on damping and stiffness of polymer composite materials, Experimental Mechanics 26, 175–84.

    Article  Google Scholar 

  • Tauchert, T. R and Hsu, N. N. (1973) Influence of stress upon internal damping in a fibre-reinforced composite material, J. Composite Materials 7, 546.

    Article  ADS  Google Scholar 

  • Teh, C. E., and White, R. G. (1980) Dynamic response of isotropic and anisotropic panels under simulated flight loading conditions, Proceedings of the 1st International Conference on Recent Advances in Structural Dynamics, ISVR

    Google Scholar 

  • Thomson, J. L. (1990) Investigation of composite interphase using dynamic mechanical analysis, artifacts and reality, Polymer Composites 11, 105–13.

    Article  Google Scholar 

  • Ting, T. C. T. (1980) Dynamic response of composites, Appl. Mech. Rev. 33, 1629–35.

    Google Scholar 

  • Tsai, G. C., Doyle, J. F.and Sun, C. T. (1987) Frequency effects on the fatigue life and damage of graphite/epoxy composites, J. Comp. Mater. 21 (1), 2–13.

    Google Scholar 

  • Tyler, F. R and Butcher, R M. (1968) A criterion for the time-dependence of dynamic fracture, Int. J. Fract. Mech. 4, 431.

    Google Scholar 

  • Velupillai, D. (1978) British Aerospace goes for composites, Flight International, November 1978. Ward, I. M. (1985). Mechanical Properties of Solid Polymers, 2nd Edn, Wiley, New York.

    Google Scholar 

  • White, R. G. (1975) Some measurements of the dynamic properties of mixed carbon fibre reinforced plastic

    Google Scholar 

  • beam and plates, The Aeronautical Journal of the Royal Aeronautical Society,318–25.

    Google Scholar 

  • Whittler, J. S. and Peck, J. C. (1969) Experiments on dispersive pulse propagation in laminated composites and comparison with theory, J. Appl. Mech. 36 485–90.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haddad, Y.M. (2000). Transition to the Dynamic Behaviour of Structured and Heterogeneous Materials. In: Mechanical Behaviour of Engineering Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2231-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2231-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5473-9

  • Online ISBN: 978-94-017-2231-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics