Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 14))

  • 523 Accesses

Abstract

Geophysical inversion seeks to determine the structure of the interior of the earth from data obtained at the surface. In reflection seismology, the problem is to find inverse methods that give structure, composition, and source parameters by processing the received seismograms. The pioneering work of Jack Cohen and Norman Bleistein on general inverse methods has caused a revolution in the direction of research on longstanding unsolved geophysical problems. This paper does not deal with such general methods but instead gives a survey of some production-type data processing methods in everyday use in geophysical exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Chalabi, M. (1974) An analysis of stacking, RMS, average, and interval velocities over a horizontally layered ground, Geophys. Prospect. 22, 458–475.

    Google Scholar 

  • Bode, H. W. (1945) Network Analysis and Feedback Amplifier Design (Princeton, N.J.: Van Nostrand).

    Google Scholar 

  • Chun, J. H., and C. A. Jacewitz (1981) Fundamentals of frequency domain migration, Geophysics 46, 717–733.

    Article  Google Scholar 

  • Dix, C. H. (1955) Seismic velocities from surface measurements, Geophysics 20, 68–86.

    Article  Google Scholar 

  • Hubral, P. (1977) Time migration, some ray theoretical aspects, Geophys. Prospect. 25, 728–745.

    Google Scholar 

  • Hubral, P., and Th. Krey (1980) in K. Lamer, ed., Interval Velocities from Seismic Reflection Time Measurements S.E.G. Monograph, Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  • Lamb, H. (1904) On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. London (A) 203, 1–42.

    Article  Google Scholar 

  • Larner, K. (1977) Depth Migration, Western Geophysical Company, Houston, Texas.

    Google Scholar 

  • Larner, K., L. Hatton, and B. Gibson (1981) Depth migration of imaged time sections, Geophysics 46, 734–750.

    Article  Google Scholar 

  • Loewenthal, D., L. Lu, R. Roberson, and J. Sherwood (1976) The wave equation applied to migration, Geophys. Prospect. 24, 380–399.

    Google Scholar 

  • Mayne, W. H. (1962) Common reflection point horizontal stacking technique, Geophysics 27, 927–938.

    Article  Google Scholar 

  • Neidell, N. S., and M. T. Taner (1971) Semblance and other coherency measures for multichannel data, Geophysics 36, 482–497.

    Article  Google Scholar 

  • Robinson, E. A. (1954) Predictive decomposition of time series with application to seismic exploration, Ph.D. thesis, Dept. of Geology and Geophysics, MIT, 252 pp. (also published in Geophysics 32, 418–484, 1967 ).

    Google Scholar 

  • Robinson, E. A. (1957) Predictive decomposition of seismic traces, Geophysics 22, 767–778.

    Article  Google Scholar 

  • Robinson, E. A. (1962) Random Wavelets and Cybernetic Systems (High Wycombe, England: Charles Griffin and Co. ), 135 pp.

    Google Scholar 

  • Robinson, E. A. (1967) Multichannel Time Series Analysis with Digital Computer Programs ( Oakland, Calif.: Holden-Day ), 328 pp.

    Google Scholar 

  • Robinson, E. A. (1980) Physical Applications of Stationary Time Series ( New York: Macmillan ), 314 pp.

    Google Scholar 

  • Robinson, E. A., and H. Wold (1963) Minimum delay structure of leastsquares/eo ipso predicting systems for stationary stochastic processes, in M. Rosenblatt, ed., Time Series Analysis ( New York: Wiley ), pp. 192–196.

    Google Scholar 

  • Silvia, M. T., and E. A. Robinson (1979) Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas ( Amsterdam: Elsevier Scientific Publishing Co. ), 274 pp.

    Google Scholar 

  • Summers, G. C., and R. A. Broding (1952) Continuous velocity logging, Geophysics 17, 598–614.

    Article  Google Scholar 

  • Taner, M. T., and F. Koehler (1969) Velocity spectra, digital computer deri- vation and application of velocity functions, Geophysics 34, 859–881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Robinson, E.A. (1985). Applied Seismology. In: Smith, C.R., Grandy, W.T. (eds) Maximum-Entropy and Bayesian Methods in Inverse Problems. Fundamental Theories of Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2221-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2221-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8418-7

  • Online ISBN: 978-94-017-2221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics