Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 14))

Abstract

Three recent applications of maximal entropy procedures to models of turbulence in plasmas are described. They are (1) the calculation of “most probable” states in guiding-center plasmas and vortex fluids, (2) the calculation of “most probable” magnetohydrodynamic equilibrium profiles, and (3) the prediction of absolute equilibrium Gibbs ensemble spectra for Navier-Stokes fluids. Further conjectures on the role of entropies in turbulence theories are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. C. Lin (1943) On the Motion of Vortices in Two Dimensions ( Toronto: University of Toronto Press).

    MATH  Google Scholar 

  2. L. Onsager (1949) Nuovo Cimento Suppl. 6, 279.

    Article  MathSciNet  Google Scholar 

  3. J. B. Taylor and B. McNamara (1971) Phys. Fluids 14, 1492.

    Article  Google Scholar 

  4. D. Montgomery, 1975, in C. de Witt and J. Peyraud, eds., Plasma Physics: Les Houches 1972 ( New York: Gordon and Breach ), pp. 425–535.

    Google Scholar 

  5. C. E. Seyler (1976) Phys. Fluids 19, 1336.

    Article  Google Scholar 

  6. R. H. Kraichnan and D. Montgomery (1980) Rep. Prog. Phys. 43, 547.

    Article  MathSciNet  Google Scholar 

  7. G. Joyce and D. Montgomery (1973) J. Plasma Phys. 10, 107.

    Article  Google Scholar 

  8. D. Montgomery and G. Joyce (1974) Phys. Fluids 17, 1139.

    Article  MathSciNet  Google Scholar 

  9. N. G. Van Kampen (1964) Phys. Rev. A135, 362.

    Article  MathSciNet  Google Scholar 

  10. D. Lynden-Bell (1967) Mon. Not. R. Astron. Soc. 136, 101.

    Google Scholar 

  11. D. L. Book, B. E. McDonald, and S. Fisher (1975) Phys. Rev. Lett. 34, 4.

    Article  Google Scholar 

  12. B. E. McDonald (1974) J. Comput. Phys. 16, 360.

    Article  MATH  Google Scholar 

  13. G. A. Kriegsmann and E. L. Reiss (1978) Phys. Fluids 21, 258.

    Article  MathSciNet  MATH  Google Scholar 

  14. A term in S was omitted in Ref. [11], where this conclusion was reached. It has since been put in and the entropy recomputed, but the conclusion did not change (B. E. McDonald, private communication).

    Google Scholar 

  15. See, for example, G. Batemann (1978) MHD Instabilities ( Cambridge, Mass.: MIT Press).

    Google Scholar 

  16. D. Montgomery, L. Turner, and G. Vahala (1979) J. Plasma Phys. 21, 239.

    Article  Google Scholar 

  17. J. Ambrosiano and G. Vahala (1981) Phys. Fluids 24, 2253.

    Article  MATH  Google Scholar 

  18. T. D. Lee (1952) Q. Appl. Math. 10, 69.

    MATH  Google Scholar 

  19. R. H. Kraichnan (1967) Phys. Fluids 10, 1417.

    Article  Google Scholar 

  20. D. Montgomery (1976) Phys. Fluids 19, 802.

    Article  MathSciNet  MATH  Google Scholar 

  21. See, for example, D. C. Leslie (1973) Development in the Theory of Turbulence (Oxford: Oxford University Press) or R. H. Kraichnan (1975) Adv. Math. 16, 305.

    Google Scholar 

  22. G. Carnevale (1979) Ph.D. Thesis (Harvard), and (1982) J. Fluid Mech. 122, 143; G. Carnevale and G. Holloway (1981) Information decay and the predictability of turbulent flows, NCAR Preprint; G. Carnevale, U. Frisch, and R. Salmon (1981) J. Ph.s. A 14, 1701.

    Article  MathSciNet  Google Scholar 

  23. That Eq. (26) is a good prediction for the time averages of the solutions to Eq. (25) with y = 0 had been previously established by C. E. Seyler, Y. Salu, D. Montgomery, and G. Knorr (1975) Phys. Fluids 18, 803.

    Article  Google Scholar 

  24. E. T. Jaynes (1957) Phys. Rev. 106, 620, and 108, 171.

    Article  MathSciNet  Google Scholar 

  25. E. T. Jaynes (1963) in K. W. Ford, ed., Statistical Physics, Vol. III (New York: W. A. Benjamin ), pp. 181–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Montgomery, D. (1985). Maximal Entropy in Fluid and Plasma Turbulence: A Review. In: Smith, C.R., Grandy, W.T. (eds) Maximum-Entropy and Bayesian Methods in Inverse Problems. Fundamental Theories of Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2221-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2221-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8418-7

  • Online ISBN: 978-94-017-2221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics