Skip to main content

Application of Autoregressive Models to the Doppler Sonar Problem

  • Chapter
Maximum-Entropy and Bayesian Methods in Inverse Problems

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 14))

  • 511 Accesses

Abstract

The application of pth-order autoregressive time series analysis models to the estimation of the time (range)-evolving Doppler sonar reverberation power spectrum is reported. In the Doppler sonar problem, scatterers suspended neutrally buoyant in the water column are used as tracers for the remote sensing of water mass motion at successive range intervals from the transducer. With the aid of a reverberation model, it is shown that the spatial transfer function characteristics of a transducer have a significant influence on the time (range)-evolving shape of the reverberation power spectrum. Thus, it is suggested that the use of first-order models is inadequate for the purpose of Doppler shift estimation. The results of an exploratory analysis of pings from a 70-kHz Doppler sonar appear to confirm this caution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Slater and R. Pinkel (1979) A 32-kW Doppler sonar, Proceedings OCEANS ‘79, 17–19 Sept. 1979, San Diego, Calif., pp. 137–141.

    Google Scholar 

  2. L. Occhiello and R. Pinkel (1979) A Doppler sonar controller, Proceedings OCEANS ‘79, 17–19 Sept. 1979, San Diego, Calif., pp. 148–152.

    Google Scholar 

  3. W. Hodgkiss (1980) Reverberation model: I. Technical description and user’s guide, MPL TM-319, 31 July 1980, Marine Physical Laboratory, Scripps Institution of Oceanography, San Diego, Calif.

    Google Scholar 

  4. J. Oltman (1981) Surface projection package, MPL TM-327, 27 February 1981, Marine Physical Laboratory, Scripps Institution of Oceanography, San Diego, Calif.

    Google Scholar 

  5. W. Hodgkiss and J. Presley (1981) Adaptive tracking of multiple sinusoids whose power levels are widely separated, IEEE Trans. Acoust. Speech Signal Process. ASSP-29 (3), 710–721.

    Google Scholar 

  6. W. Hodgkiss and J. Presley (1982) The complex adaptive least-squares lattice, IEEE Trans. Acoust. Speech Signal Process. ASSP-30 (2), 330–333.

    Google Scholar 

  7. D. G. Childers, ed. (1978) Modern Spectrum Analysis ( New York: IEEE Press ).

    Google Scholar 

  8. S. Haykin, ed. (1979) Nonlinear Methods of Spectral Analysis ( New York: Springer-Verlag ).

    MATH  Google Scholar 

  9. S. M. Kay and S. L. Margie (1981) Spectrum analysis—a modern perspective, Proc. IEEE 69, 1380–1419.

    Article  Google Scholar 

  10. K. Miller and M. Rochwaiger, (1972) A covariance approach to spectral moment estimation, IEEE Trans. Inf. Theory IT-18, 588–596.

    Google Scholar 

  11. R. Doviak, D. Zrnic, and D. Sirmans (1979) Doppler weather radar, Proc. IEEE 67, 1522–1553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hodgkiss, W.S., Hansen, D.S. (1985). Application of Autoregressive Models to the Doppler Sonar Problem. In: Smith, C.R., Grandy, W.T. (eds) Maximum-Entropy and Bayesian Methods in Inverse Problems. Fundamental Theories of Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2221-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2221-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8418-7

  • Online ISBN: 978-94-017-2221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics