Skip to main content

Molecular systematics of sponges (Porifera)

  • Chapter
Marine Genetics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 144))

Abstract

The first application of molecular systematics to sponges was in the 1980s, using allozyme divergence to discriminate between conspecific and congeneric sponge populations. Since this time, a fairly large database has been accumulated and, although the first findings seemed to indicate that sponge species were genetically more divergent than those of other marine invertebrates, a recent review of the available dataset indicates that levels of interspecific gene identities in most sponges fall within the normal range found between species of other invertebrates. Nevertheless, some sponge genera have species that are extremely divergent from each other, suggesting a possible polyphyly of these genera. In the 1990s, molecular studies comparing sequences of ribosomal RNA have been used to reappraise the phylogenetic relationships among sponge genera, families, orders and classes. Both the 18S small subunit and the 28S large subunit rRNA genes have been sequenced (41 complete or partial and 75 partial sequences, respectively). Sequences of 18S rRNA show good support for Porifera being true Metazoa, but they are not informative for resolving relationships among genera, families or orders. 28S rRNA domains Dl and D2 appear to be more informative for the terminal nodes and provide resolution for internal topologies in sufficiently closely related species, but the deep nodes between orders or classes cannot be resolved using this molecule. Recently, a more conserved gene, Hsp70, has been used to try to resolve the relationships in the deep nodes. Metazoan monophyly is very well supported. Nevertheless, the divergence between the three classes of Porifera, as well as the divergence between Porifera, Cnidaria and Ctenophora, is not resolved. Research is in progress using other genes such as those of the homeodomain, the tyrosine kinase domain, and those coding for the aggregation factor. For the moment the dataset for these genes is too restricted to resolve the phylogenetic relationships of these phyla. However, whichever the genes, the phylogenies obtained suggest that Porifera could be paraphyletic and that the phylogenetic relationships of most of the families and orders of the Demospongiae have to be reassessed. The Calcarea and Hexactinellida are still to be studied at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abouheif, E., R. Zardoya and A. Meyer, 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. mol. Evol. 47: 394–405.

    Google Scholar 

  • Aguinaldo, A. M. A., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff and J. A. Lake, 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387: 489–492.

    Google Scholar 

  • Alvarez de Glasby, B., 1998. The phylogenetic relationships of the family Axinellidae (Porifera, Demospongiae). Ph.D. Thesis, The Australian National University, Canberra.

    Google Scholar 

  • Bergquist, P. R., 1978. Sponges. Hutchinson, London.

    Google Scholar 

  • Biesalski, H. K., G. Doepner, G. Tzimas, V. Gamulin, H. C. Schröder, R. Batel, H. Nau and W. E. G. Müller, 1992. Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774.

    PubMed  CAS  Google Scholar 

  • Borchiellini, C., N. Boury-Esnault, J. Vacelet and Y. Le Parco, 1998. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. Mol. Biol. Evol. 15: 647–655.

    Google Scholar 

  • Boury-Esnault, N., M. Klautau, C. Bézac, J. Wulff and A. M. Sold-Cava, 1999. Comparative study of putative conspecific sponge populations from both sides of the Isthmus of Panama. J. mar. biol. Ass. U.K. 79: 39–59.

    Google Scholar 

  • Boury-Esnault, N., A. M. Sold-Cava and J. P. Thorpe, 1992. Genetic and cytological divergence between colour morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). J. nat. Hist. 26: 271–284.

    Google Scholar 

  • Boute, N., J. Y. Exposito, N. Boury-Esnault, J. Vacelet, N. Noro, K. Miyazaki, K. Yoshigato and R. Garrone, 1996. Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol. Cell. 88: 37–44.

    Google Scholar 

  • Braekman, J.-C., D. Daloze, C. Stoller and R. W. M. van Soest, 1992. Chemotaxonomy of Agelas ( Porifera: Demospongiae). Biochem. Syst. Ecol. 20: 417–431.

    Google Scholar 

  • Budin, K. and H. Philippe, 1998. New insights into the phylogeny of Eukaryotes based on ciliate Hsp70 sequences. Mol. Biol. Evol. 15: 943–956.

    Google Scholar 

  • Cavalier-Smith, T., M. T. E. P. Allsopp, E. E. Chao, N. BouryEsnault and J. Vacelet, 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can. J. Zool. 74: 2031–2045.

    Google Scholar 

  • Chombard, C., 1998. Les Demospongiae à asters: essai de phylogénie moléculaire. Homologie du caractère `aster’. Ph.D. Thesis, Museum, national d’Histoire naturelle Paris.

    Google Scholar 

  • Chombard, C., N. Boury-Esnault and S. Tillier, 1998. Reassesment of homology of morphological charcters in tetractinellid sponges based on molecular data. Syst. Biol. 47: 351–366.

    Google Scholar 

  • Chombard, C., A. Tillier, N. Boury-Esnault and J. Vacelet, 1997. Polyphyly of `sclerospongcs’ (Porifera, Demospongiae) supported by 28S ribosomal sequences. Biol. Bull. 193: 359–367.

    Google Scholar 

  • Christen, R., A. Ratto, A. Baroin, R. Perasso, K. G. Grell and A. Adoutte, 1991. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S rRNA, reveals an early emergence of triploblasts. Embo J. 10: 499–503.

    PubMed  CAS  Google Scholar 

  • Collins, A. G., 1998. Evaluating multiple alternative hypotheses for the origin of bilateria: An analysis of 18S rRNA molecular evidence. Proc. natn. Acad. Sci. U.S.A. 95: 15458–15463.

    Google Scholar 

  • Coutinho, C. C., S. Vissers and G. Van de Vyver, 1994. Evidence of homeobox genes in the freshwater sponge Ephydatia fiuviatilis. In van Soest, R. W. M., T. M. G. van Kempen and J. C. Braekman (eds), Sponge in Time and Space; Biology, Chemistry, Paleontology. A. A. Balkema, Rotterdam: 385–388.

    Google Scholar 

  • Dams, E., A. Vandenberghe and R. de Wachter, 1982. Nucleotide sequence of three Poriferan 5S ribosomal RNAs. Nucl. Acids Res. 10: 5297–5302

    Google Scholar 

  • Davies, R. E., 1997. Surprising diversity and distribution of spliced leader RNAs in flatworms. Mol. Biochem. Parasitol. 87: 29–48.

    Google Scholar 

  • Degnan, B. M., S. M. Degnan, A. Giusti and D. E. Morse, 1995. A hox/hom homeobox gene in sponges. Gene 155: 175–177.

    Google Scholar 

  • Degnan, B. M., S. M. Degnan, T. Naganuma and D. E. Morse, 1993. The ETS multigene family is conserved throughout the Metazoa. Nucl. Acids Res. 21: 3479–3484.

    Google Scholar 

  • Delage, Y. and E. Hérouard, 1899. Traité de zoologie concrète (Mésozoaires-Spongiaires), vol. 2. Schleicher Frères, Paris.

    Google Scholar 

  • Exposito, J.-Y. and R. Garrone, 1990. Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc. natn. Acad. Sci. U.S.A. 87: 6669–6673.

    Google Scholar 

  • Fernàndez-Busquets, X. and M. M. Burger, 1997. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J. biol. Chem. 272: 27839–27847.

    Google Scholar 

  • Finnerty, J. R., 1998. Homeoboxes in sea anemones and other nonbilaterian animals: implications for the evolution of the Hox cluster and the zootype. Curr. Top. dev. Biol. 40: 211–254.

    Google Scholar 

  • Fromont, J. P. and R. R. Bergquist, 1990. Structural characters and their use in sponge taxonomy; when is a sigma not a sigma? In Riitzler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, D.C: 273–278.

    Google Scholar 

  • Gamulin, V., K. Pfeifer, H. Bretting, I. Spreitzer and W. E. G. Müller, 1994. Identification and characterization of the first S-type lectins from invertebrates: isolation from the marine sponge Geodia cydonium. In Müller, W. E. G. (ed.), Use of Aquatic Invertebrates as Tools for Monitoring of Environmental Hazards. Gustav Fischer Verlag, Stuttgart: 213–223.

    Google Scholar 

  • Gamulin, V., A. Skorokhod, V. Kaysan, I. M. Müller and W. E. G. Müller, 1997. Experimental indication in favor of the intronslate theory: the receptor tyrosine kinase gene from the sponge Geodia cydonium. J. mol. Evol. 44: 242–252.

    Google Scholar 

  • Gething, M. J. and J. P. Sambrook, 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. S. and G. B. Golding, 1993. Evolution of Hsp70 gene and its implications regarding relationships between Archaebacteria, Eubacteria, and Eukaryotes. J. mol. Evol. 37: 573–582.

    Google Scholar 

  • Haeckel, E., 1873. On the Calcispongiae, their position in the animal kingdom. Ann. Mag. nat. Hist. 4: 241–262.

    Google Scholar 

  • Halanych, K. M., 1991. 55 ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol. Biol. Evol. 8: 249–253.

    Google Scholar 

  • Hirabayashi, J. and K.-I. Kasai, 1998. Evolution of animal lectins. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 45–88.

    Chapter  Google Scholar 

  • Itskovich, V. B., S. I. Belikov, S. M. Efremova and Y. Masuda, 1999. Phylogenetic relationships between Lubomirskiidae, Spongillidae and some marine sponges according partial sequences of 185 rDNA. Mem. Queensland Mus. 44: 275–280.

    Google Scholar 

  • Kanzawa, N., H. Takano-Ohmuro and K. Maruyama, 1995. Isolation and characterization of sea sponge myosin. Zool. Sci. 12: 765769.

    Google Scholar 

  • Kelly-Borges, M., P. R. Bergquist and P. L. Bergquist, 1991. Phylogenetic relationships within the order Hadromerida (Porifera, Demospongiae, Tetractinomorpha) as indicated by ribosomal RNA sequence comparisons. Biochem. Syst. Ecol. 19: 117–125.

    Google Scholar 

  • Kelly-Borges, M. and S. A. Pomponi, 1994. Phylogeny and classification of lithistid sponges (Porifera: Demospongiae ): A preliminary assessment using ribosomal DNA sequence comparisons. Mol. mar. Biol. Biotechnol. 3: 87–103.

    Google Scholar 

  • Kjer, K. M., 1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4: 314–330.

    Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe and A. M. Solé-Cava, 1999. Does cosmopolitanism in morphologically simple species result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53: 1414–1422.

    Google Scholar 

  • Klautau, M., A. M. Solé-Cava and R. Borojevic, 1994. Biochemical systematics of sibling sympatric species of Clathrina ( Porifera: Calcarea). Biochem. Syst. Ecol. 22: 367–375.

    Google Scholar 

  • Kobayashi, M. and N. Satoh, 1998. Early evolution of the Metazoa: an inference from the elongation factor-la. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 177–185.

    Chapter  Google Scholar 

  • Kobayashi, M., M. Takahashi, H. Wada and N. Satoh, 1993. Molecular phylogeny inferred from sequences of small subunit ribosomal DNA, supports the monophyly of the Metazoa. Zool. Sci. 10: 827–833.

    Google Scholar 

  • Komiya, H., M. Hasegawa and S. Takemura, 1983. Nucleotide sequences of 5S rRNAs from sponge Halichondria japonica and tunicate Halocynthia roretzi and their phylogenetic positions. Nucl. Acids Res. 11: 1969–1974.

    Google Scholar 

  • Koziol, C., R. Borojevic, R. Steffen and W. E. G. Müller, 1997. Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech. Ageing Dev. 100: 107–120.

    Google Scholar 

  • Koziol, C., N. Kobayashi, I. M. Müller and W. E. G. Müller, 1998a. Cloning of sponge heat shock proteins: evolutionary relationships between the major kingdoms. J. Zool. Syst. Evol. Res. 36: 101–109.

    Google Scholar 

  • Koziol, C., S. P. Leys, I. M. Müller and W. E. G. Müller, 1998b. Cloning of Hsp70 genes from the marine sponge Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges. Biol. J. Linn. Soc. 62: 581–592.

    Google Scholar 

  • Koziol, C., C. Wagner-Hülsmann, A. Mikoc, V. Gamulin, M. Kruse, Z. Pancer, H. Schacke and W. E. G. Müller, 1996. Cloning of a heat inducible biomarker, the eDNA encoding the 70-kDa heat shock protein, from the marine sponge Geodia cydonium: response to natural stressors. Mar. Ecol. Prog. Ser. 136: 153–161.

    Google Scholar 

  • Krasko, A., I. M. Müller and W. E. G. Müller, 1997a. Evolutionary relationships of the metazoan fix -crystalline, including that from the marine sponge Geodia cydonium. Proc. r. Soc. Lond. B 264: 1077–1084.

    Google Scholar 

  • Krasko, A., U. Scheffer, C. Koziol, Z. Pancer, R. Batel, F. A. Badria and W. E. G. Müller, 1997b. Diagnosis of sublethal stress in the marine sponge Geodia cydonium: application of the 70 kDa heat-shock protein and a novel biomarker, the Rab GDP dissociation inhibitor, as probes. Aquat. Toxicol. 37: 157–168.

    Google Scholar 

  • Kruse, M., V. Gamulin, H. Cetkovic, Z. Pancer, I. M. Müller and W. E. G. Müller, 1996. Molecular evolution of the Metazoan protein kinase C multigene family. J. mol. Evol. 43: 374–383.

    Google Scholar 

  • Kruse, P. D., A. Mikoc, H. Cetkovic, V. Gamulin, B. Rinkevich, I. Müller and W. E. G. Müller, 1994. Molecular evidence for the presence of a developmental gene in the lowest animals: identification of a homeobox-like gene in the marine sponge Geodia cydonium. Mech. Ageing Dev. 77: 43–54.

    Google Scholar 

  • Lafay, B., N. Boury-Esnault, J. Vacelet and R. Christen, 1992. An analysis of partial 28S ribosomal RNA sequences suggests early radiations of sponges. Biosystems 28: 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Lafay, B., A. B. Smith and R. Christen, 1995. A combined morphological and molecular approach to the phylogeny of the Asteroids. Syst. Biol. 44: 190–208.

    Google Scholar 

  • Lévi, C., 1956. Etude des Halisarca de Roscoff. Embryologie et systématique des démosponges. Arch. Zool. exp. gén. 93: 1–184.

    Google Scholar 

  • Lévi, C., 1973. Systématique de la classe des Demospongiaria (Démosponges). In Grassé, R P. (ed.), Spongiaires. Vol. 3(1). Masson and Co., Paris: 577–632.

    Google Scholar 

  • Li, C.-W., J.-Y. Chen and T.-E. Hua. 1998. Precambrian sponges with cellular structures. Science 279: 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. and E. A. Craig, 1988. The heat shock proteins. Annu. Rev. Genet. 22: 631–677.

    Google Scholar 

  • Lorenz, B., R. Bohnensack, V. Gamulin, R. Steffen and W. E. G. Müller, 1996. Regulation of motility of cells from marine sponges by calcium ions. Cell. Signal. 8: 517–524.

    Google Scholar 

  • Müller, W. E. G., 1997. Molecular phylogeny of Eumetazoa: experimental evidence for monophyly of animals based on genes in sponges (Porifera). Progr. mol. subcell. Biol. 19: 89–132.

    Google Scholar 

  • Müller, W. E. G., I. Müller and V. Gamulin, 1994. Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium. In Müller, W. E. G. (ed.), Use of Aquatic Invertebrates as Tools for Monitoring of Environmental Hazards. Gustav Fischer Verlag, Stuttgart: 187–200.

    Google Scholar 

  • Muricy, G., A. M. Solé-Cava, J. P. Thorpe and N. Boury-Esnault, 1996. Genetic evidence for extensive cryptic speciation in the subtidal sponge Plakina trilopha (Porifera: Demospongiae: Homoscleromorpha). Mar. Ecol. Prog. Ser. 138: 181–187.

    Google Scholar 

  • Nielsen, C., 1995. Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press, Oxford.

    Google Scholar 

  • Nikoh, N., N. Iwabe, K. Kuma, M. Ohno, T. Sugiyama, Y. Watanabe, K. Yasui, Z. Schi-cui, K. Hori, Y. Shimura and T. Miyata, 1997. An estimate of divergence time of parazoa and eumetazoa and that of cephalochordata and vertebrata by aldolase and triose phosphate clocks. J. mol. Evol. 45: 97–106.

    Google Scholar 

  • Odorico, D. M. and D. J. Miller, 1997. Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5’-end of the 23S-like rDNA. Proc. r. Soc. Lond. B 264: 77–82.

    Google Scholar 

  • Pancer, Z., M. Kruse, I. Müller and W. E. G. Müller, 1997. On the origin of metazoan adhesion receptors: cloning of integrin a subunit from the sponge Geodia cydonium. Mol. Biol. Evol. 14: 391–398.

    Google Scholar 

  • Pfeifer, K., W. Frank, H. C. Schröder, V. Gamulin, B. Rinkevich, R. Batel, I. M. Müller and W. E. G. Müller, 1993b. Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggregation of cells. J. Cell Sci. 106: 545–554.

    PubMed  CAS  Google Scholar 

  • Pfeifer, K., M. Haasemann, V. Gamulin, H. Bretting, F. Fahrenholz and W. E. G. Müller, 1993a. S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 3: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Richelle-Maurer, E., G. van de Vyver, S. Vissers and C. C. Coutinho, 1998. Homeobox-containing genes in freshwater sponges: characterization, expression, and phylogeny. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 157–175.

    Chapter  Google Scholar 

  • Rodrigo, A. G., P. R. Bergquist, P. L. Bergquist and P. R. Reeves, 1994. Are sponges animals? An investigation into the vagaries of phylogenetic inference. In van Soest, R. W. M., T. M. G. van Kempen and J. C. Braekman (eds), Sponge in Time and Space; Biology, Chemistry, Paleontology. A. A. Balkema, Rotterdam: 47–54.

    Google Scholar 

  • Rosen, D. and M. J. Uriz, 1997. Phylogenetic relationships within the excavating Hadromerida ( Porifera), with a systematic revision. Cladistics 13: 349–366.

    Google Scholar 

  • Sarà, M., G. Corriero and G. Bavestrello, 1993. Tethya ( Porifera, Demospongiae) species coexisting in a Maldivian coral reef lagoon - taxonomical, genetic and ecological data. Mar. Ecol. 14: 341–355.

    Google Scholar 

  • Schäcke, H., H. C. Schröder, V. Gamulin, B. Rinkevich, I. Müller and W. E. G. Müller, 1994. Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol. Membrane Biol. 11: 101–107.

    Google Scholar 

  • Seimiya, M., H. Ishiguro, K. Miura, Y. Watanabe and Y. Kurosawa, 1994. Homeobox-containing genes in the most primitive mctazoa, the sponges. Eur. J. Biochcm. 221: 219–225.

    Google Scholar 

  • Seimiya, M., M. Naito, Y. Watanabe and Y. Kurosawa, 1998. Borneobox genes in the freshwater sponge Ephydatia fluviatilis. In Müller, W. E. G. (ed.), Molecular Evolution: Evidence for Monophyly of Metazoa. Vol. 19. Springer, Berlin: 133–155.

    Chapter  Google Scholar 

  • Seimiya, M., Y. Watanabe and Y. A. D. Kurosawa, 1997. Identification of POU-class homeobox genes in a freshwater sponge and the specific expression of these genes during differentiation. Eur. J. Biochem. 243: 27–31.

    Google Scholar 

  • Smith, A. B., B. Lafay and R. Christen, 1992. Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in echinoids. Phil. Trans. r. Soc. Lond. B 338: 365–382.

    Google Scholar 

  • Smith, A. B., G. L. Paterson and B. Lafay, 1995. Ophiuroid phylogeny and higher taxonomy: morphological, molecular and paleontological perspectives. Zool. J. linn. Soc. 114: 213–243.

    Google Scholar 

  • Soest, R. W. M. van, 1990. Toward a phylogenetic classification of sponges. In Rützler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, D.C: 344350.

    Google Scholar 

  • Soest, R. W. M. van, 1991. Demosponge higher taxa classification re-examined. In Reitner, J. and H. Keupp (eds), Fossil and Recent Sponges. Springer-Verlag, Berlin: 54–71.

    Chapter  Google Scholar 

  • Solé-Cava, A. M. and N. Boury-Esnault, 1999. Patterns of intra and interspecific divergence in marine sponges. Mem. Queensland Mus. 44: 591–602.

    Google Scholar 

  • Solé-Cava, A. M., N. Boury-Esnault, J. Vacelet and J. P. Thorpe, 1992. Biochemical genetic divergence and systematics in sponges of the genera Corlicium and Oscarella ( Demospongiae: Homoscleromorpha) in the Mediterranean Sea. Mar. Biol. 113: 299–304.

    Google Scholar 

  • Solé-Cava, A. M., M. Klautau, N. Boury-Esnault, R. Borojevic and J. P. Thorpe, 1991a. Genetic evidence for cryptic speciation in allo-patrie populations of two cosmopolitan species of the calcareous sponge genus Clathrina. Mar. Biol. I11: 381–386.

    Google Scholar 

  • Solé-Cava, A. M. and J. P. Thorpe, 1986. Genetic differentiation between morphotypes of the marine sponge Suberites ficus ( Demospongiae: Hadromerida). Mar. Biol. 93: 247–253.

    Google Scholar 

  • Solé-Cava, A. M., J. P. Thorpe and R. Manconi, 1991b. A new Mediterranean species of Axinella detected by biochemical genetic methods. In Reitner, J. and H. Keupp (eds), Fossil and Recent Sponges. Springer-Verlag, Berlin: 313–321.

    Chapter  Google Scholar 

  • Thorpe, J. P., 1983. Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In Oxford, R. S. and D. Rollison (eds), Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, London: 131–152.

    Google Scholar 

  • Vacelet, J., 1985. Coralline sponges and the evolution of the Porifera. In Conway-Morris, S., J. D. George, R. Gibson and H. M. Platt (eds), The Origin and Relationships of Lower Invertebrates. Clarendon Press, Oxford: 1–13.

    Google Scholar 

  • Wainwright, P. 0., G. Hinckle, M. L. Sogin and S. K. Stickel, 1993. Monophyletic origins of the Metazoa: an evolutionary link with Fungi. Science 260: 340–342.

    Google Scholar 

  • West, L. and D. Powers, 1993. Molecular phylogenetic position of hexactincllid sponges in relation to the Protista and Demospongiae. Mol. mar. Biol. Biotechnol. 2: 71–75.

    Google Scholar 

  • Zrzavy, J., S. Mihulka, P. Kepka and A. Bezdek, 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14: 249–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borchiellini, C., Chombard, C., Lafay, B., Boury-Esnault, N. (2000). Molecular systematics of sponges (Porifera). In: Solé-Cava, A.M., Russo, C.A.M., Thorpe, J.P. (eds) Marine Genetics. Developments in Hydrobiology, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2184-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2184-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5387-9

  • Online ISBN: 978-94-017-2184-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics