Skip to main content

DNA tests of neutral theory: applications in marine genetics

  • Chapter
Marine Genetics

Part of the book series: Developments in Hydrobiology ((DIHY,volume 144))

  • 396 Accesses

Abstract

The principal methods of using DNA sequence information to test the neutral theory of evolution and polymorphism are described. These include the use of synonymous and nonsynonymous substitutions for detecting purifying and positive selection, the analysis of nucleotide diversity, mismatch analysis and the HKA, McDonald-Kreitman, Tajima and Ewens-Watterson tests. Analysis of the covariation of different kinds of molecular markers and the relationship between genetic variation and fitness is also considered. Examples of the use of these approaches in a wide variety of marine organisms are described. It is emphasised that tests of neutral theory, in addition to providing important fundamental knowledge about the action of evolutionary forces, provide valuable information about the influence of environmental and demographic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguade, M. & C. H. Langley, 1994. Polymorphism and divergence in regions of low recombination in Drosophila. In Golding, B. (ed.), Non-Neutral Evolution: Theories and Data. Chapman & Hall, New York: 67–76.

    Chapter  Google Scholar 

  • Arnason, E. & S. Palsson, 1996. Mitochondrial cytochrome b DNA sequence variation of Atlantic cod Gadus morhua, from Norway. Mol. Ecol. 5: 715–724.

    Article  CAS  Google Scholar 

  • Beerli, P., 1998. Estimation of migration rates and populations sizes in geographically structured populations. In Carvalho, G. (ed.), Advances in Molecular Ecology. NATO Science, Series A: Life Sciences. IOS Press, Amsterdam: 39–53.

    Google Scholar 

  • Begun, C. J. & C. F. Aquadro, 1992. Levels of naturally occurring DNA polymorphism correlate with recombination rates of Drosophila melanogaster. Nature 356: 519–520.

    Article  PubMed  CAS  Google Scholar 

  • Bertorelle, G. & M. Slatkin, 1995. The number of segregating sites in expanding human populations, with implications for estimates of demographic parameters. Mol. Biol. Evol. 12: 887–892.

    Google Scholar 

  • Boom, J. D. G., E. G. Boulding & A. T. Beckenback, 1994. Mitochondrial DNA variation in introduced populations of pacific oyster, Crassostrea gigas, in British Columbia. Can. J. Fish. aquat. Sci. 51: 1608–1614.

    Google Scholar 

  • Britten, H. B., 1996. Meta-analysis of the association between multilocus heterozygosity and fitness. Evolution 50: 2158–2164.

    Article  Google Scholar 

  • Brookfield, J. F. Y & P. M. Sharp, 1994. Neutralism and selectionism face up to DNA data. Trends Genet. 10: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Buroker, N. E., 1983. Population genetics of the American oyster Crassostrea virginica along the Atlantic coast and the Gulf of Mexico. Mar. Biol. 75: 99–112.

    Google Scholar 

  • Burton, R. S. & B. -N. Lee, 1994. Nuclear and mitochondrial gene genealogies and allozyme polymorphisme across a major phylogeographic break in the copepod Tigriopus californicus. Proc. natn. Acad. Sci. U.S.A. 91: 5197–5201.

    Google Scholar 

  • Charlesworth, D., B. Charlesworth & M. T. Morgan, 1995. The pattern of neutral molecular variation under the background selection model. Genetics 141: 1605–1617.

    Google Scholar 

  • Endo, T., K. Ikeo & T. Gojobori, 1996. Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol. 13: 685–690.

    Google Scholar 

  • Fevolden, S. E. & R. Schneppenheim, 1989. Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean. Polar. Biol. 9: 533–539.

    Google Scholar 

  • FitzSimmons, N. N., C. Moritz, C. J. Limpus, L. Pope & R. Prince, 1997. Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow. Genetics 147: 184–1854.

    Google Scholar 

  • Ford, M. J., 1998. Testing models of migration and isolation among populations of chinook salmon (Oncorhynchu.s tschawytscha). Evolution 52: 539–557.

    Article  Google Scholar 

  • Fu, Y. X., 1994. A phylogenetic estimator of effective population size or mutation rate. Genetics 136: 685–692.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. H., 1989. Could natural selection account for molecular evolution and polymorphism? Genome 31: 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H., 1991. The causes of molecular evolution. Oxford University Press, New York.

    Google Scholar 

  • Gillespie, J. H., 1994. Alternatives to the neutral theory. In Golding, B. (ed.), Non-Neutral Evolution: Theories and Data. Chapman & Hall, New York: 1–17.

    Chapter  Google Scholar 

  • Graur, D. & W. H. Li, 1991. Neutral mutation hypothesis test. Nature 354: 114–115.

    Article  Google Scholar 

  • Hare, M. P. & J. C. Avise, 1998. Population structure in the American oyster as inferred by nuclear gene genealogies. Mol. Biol. Evol. 15: 119–128.

    Google Scholar 

  • Hare, M. P., S. A. Karl & J. C. Avise, 1996. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13: 334–345.

    Google Scholar 

  • Hudson, R. R., 1991. Gene genealogies and the coalescent approach. Oxford Surv. evol. Biol. 7: 1–44.

    Google Scholar 

  • Hudson. R. R., M. Kreitman & M. Aguade, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159.

    PubMed  CAS  Google Scholar 

  • Karl, S. A. & J. C. Avise, 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLP’s. Science 256: 100–102.

    Article  PubMed  CAS  Google Scholar 

  • Karl, S. A., S. Schultz, D. Desbruyeres, R. Lutz & R. C. Vrijenhoek, 1996. Molecular analysis of gene flow in the hydrothermal vent clam (Calyptogena magnifica). Mol. mar. Biol. Biotech. 5: 193202.

    Google Scholar 

  • Kimura, M., 1983. The neutral theory of molecular evolution. Cambridge University Press, London.

    Book  Google Scholar 

  • Kimura, M. & J. F. Crow, 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    PubMed  CAS  Google Scholar 

  • Lavery, S., C. Moritz & D. R. Fielder, 1996. Genetic patterns suggest exponential population growth in a declining species. Mol. Biol. Evol. 13: 1106–1113.

    Google Scholar 

  • Lee, Y. -H. & V. D. Vacquier, 1992. The divergence of species-specific abalone sperm lysins is promoted by positive Darwinian selection. Biol. Bull. 182: 97–104.

    Google Scholar 

  • Lee, Y. -H., T. Ota & V. D. Vacquier, 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12: 231–238.

    Google Scholar 

  • Lewontin, R. C. & J. Krakauer, 1975. Testing the heterogeneity of F values. Genetics 80: 397–398.

    PubMed  CAS  Google Scholar 

  • McDonald, J. H., 1994. Detecting natural selection by comparing geographic variation in protein and DNA polymorphisms. In Golding, B. (ed.), Non-Neutral Evolution: Theories and Data. Chapman & Hall, New York: 88–100.

    Chapter  Google Scholar 

  • McDonald, J. H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. H., B. C. Verrelli & L. B. Geyer, 1996. Lack of geographic variation in anonymous nuclear polymorphisms in the American oyster, Crassostrea virginica. Mol. Biol. Evol. 13: 1114–1118.

    Google Scholar 

  • Metz, C. E., G. Gomez-Gutierrez & V. D. Vacquier, 19986. Mitochondria] DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol. Biol. Evol. 15: 185–195.

    Google Scholar 

  • Metz, E. C. & S. R. Palumbi, 1996. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol. 13: 397–406.

    Google Scholar 

  • Metz, C. E., R. Robles-Sikisaka & V. D. Vacquier, 1998a. Non-synonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc. natn. Acad. Sci. U.S.A. 95: 10676–10681.

    Google Scholar 

  • Moriyama, E. N. & J. R. Powell, 1996. Intraspecific nuclear DNA variation in Drosophila. Mol. Biol. Evol. 13: 261–277.

    Google Scholar 

  • Nei, M. & T. Maruyama, 1975. Lewontin-Krakauer test for neutral genes. Genetics 80: 395.

    PubMed  CAS  Google Scholar 

  • Ohta, T., 1992. The nearly neutral theory of molecular evolution. Ann. Rev. Ecol. Syst. 23: 263–286.

    Google Scholar 

  • Pogson, G. H. & S. E. Fevolden, 1998. DNA heterozygosity and growth rate in the Atlantic cod Gadus morhua ( L). Evolution 52: 915–920.

    Google Scholar 

  • Pogson, G. H., K. A. Mesa & R. G. Boutilier, 1995. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139: 375–385.

    PubMed  CAS  Google Scholar 

  • Pogson, G. H. & E. Zouros, 1994. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placo-pecten magellanicus: a test of the associative overdominance hypothesis. Genetics 137: 221–231.

    PubMed  CAS  Google Scholar 

  • Powers, D. A. & P. M. Schulte, 1998. Evolutionary adaptations of gene structure and expression in natural populations in relation to a changing environment: a multidisciplinary approach to address the million-year saga of small fish. J. exp. Zool. 282: 71–94.

    Google Scholar 

  • Quesada, H., M. Warren & D. O. F. Skibinski, 1998. Nonneutral evolution and differential mutation rate of gender-associated mitochondrial DNA lineages in the marine mussel Mytilus. Genetics 149: 1511–1526.

    PubMed  CAS  Google Scholar 

  • Quesada, H., R. Wenne & D. O. F. Skibinski, 1999. Interspecies transfer of female mitochondrial DNA is coupled with role-reversals and departure from neutrality in the mussel Mytilus trossulus. Mol. Biol. Evol. 16: 655–665.

    Google Scholar 

  • Rand, D. M., 1996. Neutrality tests of molecular markers and the connection between DNA polymorphism, demography and conservation biology. Conserv. Biol. 10: 665–671.

    Article  Google Scholar 

  • Rand, D. M. & L. M. Kann, 1998. Mutation and selection at silent and replacement sites in the evolution of anima] mitochondria] DNA. Genetica 102 /103: 393–407.

    Article  PubMed  Google Scholar 

  • Raybould, A. F., R. J. Mogg & R. T. Clarke, 1996. The genetic structure of Beta vulgaris ssp. maritima (sea beet) populations: RFLPs and isozymes show different patterns of gene flow. Heredity 77: 245–250.

    Google Scholar 

  • Raybould, A. F, R. J. Mogg, C. Aldam, C. J. Gliddon, R. S. Thorpe & R. T. Clarke, 1998. The genetic structure of sea beet (Beta vulgaris ssp. maritima) populations. III. Detection of isolation by distance at microsatellite loci. Heredity 80: 127–132.

    Google Scholar 

  • Reeb, C. A. & J. C. Avise, 1990. A genetic discontinuity in a continuously distributed species: mitochondria] DNA in the American oyster, Crassostrea virginica. Genetics 124: 397–406.

    PubMed  CAS  Google Scholar 

  • Robertson, A., 1975. Remarks on the Lewontin-Krakauer test. Genetics 80: 396.

    PubMed  CAS  Google Scholar 

  • Rogers, A. R., 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608–615.

    Article  Google Scholar 

  • Rogers, A. R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9: 552–569.

    Google Scholar 

  • Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. & R. R. Hudson, 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555–562.

    PubMed  CAS  Google Scholar 

  • Stewart, D. T., E. R. Kenchington, R. K. Singh & E. Zouros, 1996. Degree of selective constraint as an explanation of the different rates of evolution of gender-specific mitochondrial DNA lineages in the mussel Mytilus. Genetics 143: 1349–1357.

    PubMed  CAS  Google Scholar 

  • Stewart, D. T., C. Saavedra, R. R. Stanwood, A. O. Ball & E. Zouros, 1995. Male and female mitochondrial DNA lineages in the blue mussel (Mytilus edulis) species group. Mol. Biol. Evol. 12: 735–747.

    Google Scholar 

  • Swanson, W. J. & V. D. Vacquier, 1998. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein. Science 281: 710–712.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

    PubMed  CAS  Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    PubMed  CAS  Google Scholar 

  • Taylor, M. F. J., Y. Shen & M. E. Kreitman, 1995. A population genetic test of selection at the molecular level. Science 270: 1497–1499.

    Article  PubMed  CAS  Google Scholar 

  • Vacquier, V. D., W. J. Swanson & Y. -H. Lee, 1997. Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence ? J. mol. Evol. 44: S15 - S22.

    Article  PubMed  CAS  Google Scholar 

  • Watterson, G. A., 1975. On the number of segregation sites. Theor. Pop. Biol. 7: 256–276.

    Article  CAS  Google Scholar 

  • Watterson, G. A., 1978. The homozygosity test of neutrality. Genetics 88: 405–417.

    PubMed  CAS  Google Scholar 

  • Whitlock, M. C. & D. E. McCauley, 1999. Indirect measures of gene flow and migration. EST l/(4N, + 1). Heredity 82: 117–125.

    Article  PubMed  Google Scholar 

  • Whittam, T. S. & M. Nei, 1991. Neutral mutation hypothesis test. Nature 354: 115–116.

    Article  Google Scholar 

  • Williams, S. T. & J. A. H. Benzie, 1997. Indo-West Pacific patterns of genetic differentiation in the high-dispersal starfish Linckia laevigata. Mol. Ecol. 6: 559–573.

    Google Scholar 

  • Zane, I., L. Ostellari, L. Maccatrozzo, L. Bargelloni, B. Battaglia & T. Patamello, 1998. Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations. Proc. r. Soc., Lond. B 265: 2387–2391.

    Article  CAS  Google Scholar 

  • Zouros, E. & G. H. Pogson, 1994. The present status of the relationship between heterozygosity and heterosis. In Beaumont, A. R. (ed.), Genetics and the Evolution of Aquatic Animals. Chapman and Hall, London: 135–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skibinski, D.O.F. (2000). DNA tests of neutral theory: applications in marine genetics. In: Solé-Cava, A.M., Russo, C.A.M., Thorpe, J.P. (eds) Marine Genetics. Developments in Hydrobiology, vol 144. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2184-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2184-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5387-9

  • Online ISBN: 978-94-017-2184-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics