Skip to main content

Abstract

Microbial exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) play a major role in the manufacturing of fermented dairy products. EPS production is characterized by a large variety in terms of quantity, chemical composition, molecular size, charge, type of sidechains and rigidity of the molecules. Monosaccharide unit’s composition, linkages, charge and size determine the EPS’ intrinsic properties and their interactions with other milk constituents. EPSs contribute to texture, mouthfeel, taste perception and stability of the final product. Furthermore, it was reported that EPS from food grade organisms, particularly LAB, have potential as food additives and as functional food ingredients with both health and economic benefits. A better understanding of structure-function relationships of EPS in a dairy food matrix and of EPS biosynthesis remain two major challenges for further applications of EPS and the engineering of functional polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CPS:

capsular polysaccharide

EPS:

exopolysaccharide

LAB:

lactic acid bacteria

LPS:

lipopolysaccharide

LTA:

lipotechoïc acid

References

  • Berkman T, Bozoglu IT and Özilgen M (1990) Mixed culture growth kinetics of Streptococcus thermophilus and Lactobacillus bulgaricus. Enzyme Microbial Technol. 12: 138–140.

    Article  CAS  Google Scholar 

  • Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezem M and de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11: 723–732.

    Google Scholar 

  • Bouzar F, Ceming J and Desmazeaud M (1997) Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80: 2310–2317.

    Article  CAS  Google Scholar 

  • Breton C, Mucha J and Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83: 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Cerning J, Bouillanne C, Desmazeaud MJ and Landon M (1986) Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625–628.

    Google Scholar 

  • Ceming J, Bouillanne C, Landon M and Desmazeaud MJ (1990) Comparison of exocellular polysaccharide production by thermophilic acid bacteria. Science des Aliments 10: 443–451.

    Google Scholar 

  • Cerning J, Bouillanne C, Landon M and Desmazeaud MJ (1992) Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692699.

    Google Scholar 

  • Ceming J and Marshall VME (1999) Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Results Develop. Microbiol. 3: 195–209.

    Google Scholar 

  • Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud MJ and Topisirovic L (1994) Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914–3919.

    Google Scholar 

  • Christiansen PS, Madeira AIMR and Edelstein D (1999) The use of ropy milk as stabilizer in the manufacture of ice cream. Milchwissenschaft 54: 138–140.

    CAS  Google Scholar 

  • Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ and Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  • Cieslewicz MJ, Kasper DL, Wang Y and Wessels MR (2001) Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139–146.

    Google Scholar 

  • Crescenzi V (1995) Microbial polysaccharides of applied interest: on going research activities in Europe. Biotechnol. Progr. 11: 251–259.

    Article  CAS  Google Scholar 

  • Cummings JH and Englyst HN (1995) Gastrointestinal effects of food carbohydrate. Am. J Clin. Nutr. 61: 938–945.

    Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F and and Degeest B. (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707.

    Google Scholar 

  • De Vuyst L and Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.

    Google Scholar 

  • Duboc P, Fischer M and Vincent SJF (2002) Characterization of glueonacetan, a new texturizing carbohydrate polymer: a basis for a structure-function relationship in polysaccharides. Submitted for publication.

    Google Scholar 

  • Duboc P and Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.

    Article  CAS  Google Scholar 

  • Escalante A, Wacher-Rodarte C, Garcia-Garibay M and Farrés A (1998) Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. J. Appl. Microbiol. 84: 108–114.

    Google Scholar 

  • Faber EJ, van Kuik JA, Kamerling JP and Vliegenthart JF (2002) Modeling of the structure in aqueous solution of the exopolysaccharide produced by Lactobacillus helveticus 766. Biopolymers 63: 66–76.

    Article  PubMed  CAS  Google Scholar 

  • Faber EJ, Zoon P, Kamerling JP and Vliegenthart JF (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310: 269–276.

    Google Scholar 

  • Gancel F and Novel G (1994) Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. Conditions of production. J. Dairy Sci. 77: 685–688.

    Article  CAS  Google Scholar 

  • German B, Schiffrin EJ, Reniero R, Mollet B, Pfeifer A and Neeser JR (1999) The development of functional foods: lessons from the gut. Trends Biotechnol. 17: 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Germond JE, Delley M, D’Amico N and Vincent SJ (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.

    Google Scholar 

  • Grobben GJ, Sikkema J, Smith MR and de Bont JAM (1995) Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103–107.

    Google Scholar 

  • Harris PJ and Ferguson LR (1993) Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Res. 290: 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Hess SJ, Roberts RF and Ziegler GR (1997) Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. J. Dairy Sci. 80: 252–263.

    Article  CAS  Google Scholar 

  • Jay AJ, Colquhoun IJ, Ridout MJ, Brownsey GJ, Morris VJ, Fialho AM, Leito JH and Sa-Correira I (1998) Analysis of structure and function of gellans with different substitution patterns. Carbohydr. Polym. 35: 179–188.

    Google Scholar 

  • Jolly L, Newell J, Porcelli I, Vincent SJF and Stingele F (2002) Lactobacillus helveticus glycosyltransferases: from genes to carbohydrate synthesis. Glycobiol. In press.

    Google Scholar 

  • Jolly L and Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int. Dairy J. 11: 733–745.

    Article  CAS  Google Scholar 

  • Kalab M, Allan-Wojtas P and Phipps-Todd BE (1983) Development of microstructure in set-style nonfat yoghurt. A review. Food Microstructure 2: 51–66.

    Google Scholar 

  • Kojic M, Vujcic M, Banina A, Cocconcelli P, Cerning J and Topisirovic L (1992) Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ. Microbiol. 58: 4086–4088.

    Google Scholar 

  • Kosikowski FV (1982) Cheese and Fermented Milk Foods. 2nd edn.

    Google Scholar 

  • Levander F, Svensson M and Radstrom P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl. Environ. Microbiol. 68: 784–790.

    Google Scholar 

  • Looijesteijn PJ, Boels IC, Kleerebezem M and Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003–5008.

    Google Scholar 

  • Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ and Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl. Environ. Microbiol. 64: 2147–2151.

    Google Scholar 

  • Macura D and Townsley PM (1984) Scandinavian ropy milk: identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67: 735–744.

    Article  CAS  Google Scholar 

  • McMahon DJ, Oberg CJ and McManus W (1993) Functionality of mozzarella cheese. Austr. J. Dairy Technol. 48: 99–104.

    Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM and Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 675–685.

    Google Scholar 

  • Moreira LM, Becker JD, Puhler A and Becker A (2000) The Sinorhizobium meliloti ExpE1 protein secreted by a type I secretion system involving ExpD1 and ExpD2 is required for biosynthesis or secretion of the exopolysaccharide galactoglucan. Microbiology 146: 2237–2248.

    PubMed  CAS  Google Scholar 

  • Mozzi F, Olivier G, Savyo de Giori GS and Font de Valdez GF (1995) Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50: 80–82.

    Google Scholar 

  • Mozzi F, Savyo de Giori GS, Olivier G and Font de Valdez GF (1994) Effect of culture pH on the growth characteristics and polysaccharide production by Lactobacillus casei. Milchwissenschaft 49: 667–670.

    CAS  Google Scholar 

  • Paton AW, Morona R and Paton JC (2000) A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat. Med. 6: 265–270.

    Google Scholar 

  • Perry DB, McMahon DJ and Oberg CJ (1997) Effect of exopolysaccharide producing cultures on moisture retention in low-fat mozzarella cheese. J. Dairy Sci. 80: 799–805.

    Article  CAS  Google Scholar 

  • Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG and Strynadka NC (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8: 166–175.

    Google Scholar 

  • Petry S, Furlan S, Crepeau MJ, Cerning J and Desmazeaud m (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 34273431.

    Google Scholar 

  • Pérez S, Kouwijtzer M, Mazeau K and Engelsen SB (1996) Modeling Polysaccharides: Present Status and Challenges. J. Model. Graph. 307–321.

    Google Scholar 

  • Reid G, Howard J and Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol. 9: 424–428.

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi A and Clementi F (2000) Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Ital. J. Food. Sci. 23–45.

    Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285–315.

    Article  PubMed  CAS  Google Scholar 

  • Rohm H and Kovac A (1994) Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J. Texture Studies 25: 311–329.

    Google Scholar 

  • Rohm H and Schmid W (1993) Influence of dry matter fortification on flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft 48: 556–560.

    Google Scholar 

  • Ruijssenaars HJ, Stingele F and Hartmans S (2000) Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194–199.

    Google Scholar 

  • Sebastian H and Zelger G (1998) Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft 53: 15–20.

    Google Scholar 

  • Stingele F, Neeser JR and Mollet B (1996) Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680–1690.

    PubMed  CAS  Google Scholar 

  • Stingele F, Vincent SJ, Faber EJ, Newell JW, Kamerling JP and Neeser JR (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32: 1287–1295.

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides 181. Trends Biotechnol. 16: 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Tamime AY and Robinson RK (1999) Yoghurt Science and Technology.

    Google Scholar 

  • Teggatz JA and Morris HA (1990) Changes in the rheology and microstructure of ropy yogurt during shearing. Food Structure 9: 133–138.

    Google Scholar 

  • Tuinier R, ten Grotenhuis E, Holt C, Timmins PA and de Kruif CG (1999) Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review 60: 848–856.

    PubMed  CAS  Google Scholar 

  • Tuinier R, van Casteren WH, Looijesteijn PJ, Schools HA, Voragen AG and Zoon P (2001) Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactic. Biopolymers 59: 160–166.

    Article  Google Scholar 

  • Unligil UM and Rini JM (2000) Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10: 510–517.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Ledeboer AM and Verrips CT (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake 0–1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840–2844.

    Google Scholar 

  • Van Geel-Schutten GH, Faber EJ, Smit E, Bonting K, Smith MR, Ten Brink B, Kamerling JP, Vliegenthart JF and Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65: 3008–3014.

    Google Scholar 

  • van Kranenburg R, Boels IC, Kleerebezem M and de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr. Opin. Biotechnol. 10: 498–504.

    Google Scholar 

  • van Made ME and Zoon P (1995) Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Netherlands Milk Dairy J. 49: 47–65.

    Google Scholar 

  • Vincent SJ, Faber EJ, Neeser JR, Stingele F and Kamerling JP (2001) Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology 11: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield C and Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv. Microb. Physiol. 35: 135–246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jolly, L., Vincent, S.J.F., Duboc, P., Neeser, JR. (2002). Exploiting exopolysaccharides from lactic acid bacteria. In: Siezen, R.J., Kok, J., Abee, T., Schasfsma, G. (eds) Lactic Acid Bacteria: Genetics, Metabolism and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2029-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2029-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6141-6

  • Online ISBN: 978-94-017-2029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics